1、掌握对数函数的概念、图像和性质版权所有(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题 02. 函数 知识要点一、本章知识网络结构:二、知识回顾:(一) 映射与函数1. 映射与一一映射2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.3.反函数反函数的定义设函数的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x=(y). 若对于y在C中的任何一个值,通过x=(y),x在A中都有唯一的值和它对应,那么,x=(y)就表示y是自变量,x
2、是自变量y的函数,这样的函数x=(y) (yC)叫做函数的反函数,记作,习惯上改写成(二)函数的性质函数的单调性定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2,若当x1x2时,都有f(x1)f(x2),则说f(x)在这个区间上是增函数;若当x1f(x2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2.函数的奇偶性7. 奇函数,偶函数:偶函数:设()为偶函数上一点,则()也是图象上一点.偶函数的判定:
3、两个条件同时满足定义域一定要关于轴对称,例如:在上不是偶函数.满足,或,若时,.奇函数:设()为奇函数上一点,则()也是图象上一点.奇函数的判定:定义域一定要关于原点对称,例如:在上不是奇函数.8. 对称变换:y = f(x)y =f(x)y =f(x)9. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:在进行讨论.10. 外层函数的定义域是内层函数的值域.例如:已知函数f(x)= 1+的定义域为A,函数ff(x)的定义域是B,则集合A与集合B之间的关系是 . 解:的值域是的定义域,的值域,故,而A,故.11. 常用变换:.证:12. 熟悉常用函数图象:例:关于轴对称. 关于
4、轴对称.熟悉分式图象:定义域,值域值域前的系数之比.(三)指数函数与对数函数指数函数的图象和性质a10a0时,y1;x0时,0y时 时(5)在(0,+)上是增函数在(0,+)上是减函数注:当时,.:当时,取“+”,当是偶数时且时,而,故取“”.中x0而中xR).()与互为反函数.当时,的值越大,越靠近轴;当时,则相反.(四)方法总结.相同函数的判定方法:定义域相同且对应法则相同.对数运算:.函数表达式的求法:定义法;换元法;待定系数法.反函数的求法:先解x,互换x、y,注明反函数的定义域(即原函数的值域).函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉
5、及到的依据为分母不为0;偶次根式中被开方数不小于0;对数的真数大于0,底数大于零且不等于1;零指数幂的底数不等于零;实际问题要考虑实际意义等.函数值域的求法:配方法(二次或四次);“判别式法”;反函数法;换元法;不等式法;函数的单调性法.单调性的判定法:设x,x是所研究区间内任两个自变量,且xx;判定f(x)与f(x)的大小;作差比较或作商比较.奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;f(-x)/f(x)=1是偶;f(x)f(-x)=-1为奇函数.图象的作法与平移:据函数表达式,列表、描点、连光滑曲线;利用熟知函数的图象的平移、翻转、伸缩变换;利用反函数的图象与对称性描绘函数图象.7
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1