ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:675.50KB ,
资源ID:14787228      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14787228.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高考数学知识要点:函数Word格式文档下载.doc)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

高考数学知识要点:函数Word格式文档下载.doc

1、掌握对数函数的概念、图像和性质版权所有(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题 02. 函数 知识要点一、本章知识网络结构:二、知识回顾:(一) 映射与函数1. 映射与一一映射2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.3.反函数反函数的定义设函数的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x=(y). 若对于y在C中的任何一个值,通过x=(y),x在A中都有唯一的值和它对应,那么,x=(y)就表示y是自变量,x

2、是自变量y的函数,这样的函数x=(y) (yC)叫做函数的反函数,记作,习惯上改写成(二)函数的性质函数的单调性定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2,若当x1x2时,都有f(x1)f(x2),则说f(x)在这个区间上是增函数;若当x1f(x2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2.函数的奇偶性7. 奇函数,偶函数:偶函数:设()为偶函数上一点,则()也是图象上一点.偶函数的判定:

3、两个条件同时满足定义域一定要关于轴对称,例如:在上不是偶函数.满足,或,若时,.奇函数:设()为奇函数上一点,则()也是图象上一点.奇函数的判定:定义域一定要关于原点对称,例如:在上不是奇函数.8. 对称变换:y = f(x)y =f(x)y =f(x)9. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:在进行讨论.10. 外层函数的定义域是内层函数的值域.例如:已知函数f(x)= 1+的定义域为A,函数ff(x)的定义域是B,则集合A与集合B之间的关系是 . 解:的值域是的定义域,的值域,故,而A,故.11. 常用变换:.证:12. 熟悉常用函数图象:例:关于轴对称. 关于

4、轴对称.熟悉分式图象:定义域,值域值域前的系数之比.(三)指数函数与对数函数指数函数的图象和性质a10a0时,y1;x0时,0y时 时(5)在(0,+)上是增函数在(0,+)上是减函数注:当时,.:当时,取“+”,当是偶数时且时,而,故取“”.中x0而中xR).()与互为反函数.当时,的值越大,越靠近轴;当时,则相反.(四)方法总结.相同函数的判定方法:定义域相同且对应法则相同.对数运算:.函数表达式的求法:定义法;换元法;待定系数法.反函数的求法:先解x,互换x、y,注明反函数的定义域(即原函数的值域).函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉

5、及到的依据为分母不为0;偶次根式中被开方数不小于0;对数的真数大于0,底数大于零且不等于1;零指数幂的底数不等于零;实际问题要考虑实际意义等.函数值域的求法:配方法(二次或四次);“判别式法”;反函数法;换元法;不等式法;函数的单调性法.单调性的判定法:设x,x是所研究区间内任两个自变量,且xx;判定f(x)与f(x)的大小;作差比较或作商比较.奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;f(-x)/f(x)=1是偶;f(x)f(-x)=-1为奇函数.图象的作法与平移:据函数表达式,列表、描点、连光滑曲线;利用熟知函数的图象的平移、翻转、伸缩变换;利用反函数的图象与对称性描绘函数图象.7

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1