1、乙发现1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A甲B乙C丙D丁【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论)假设甲和丙的结论正确,则,抛物线的解析式为y=x22x+4当x=1时,y=x22x+4=7,乙的结论不正确;当x=2时,y=x22x+4=4,丁的结论正确四位同学中只有一位发现的结论是错误的,假设成立B3(2018潍坊)已知二次函数y
2、=(xh)2(h为常数),当自变量x的值满足2x5时,与其对应的函数值y的最大值为1,则h的值为()A3或6B1或6C1或3D4或6【分析】分h2、2h5和h5三种情况考虑:当h2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2h5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论综上即可得出结论当h2时,有(2h)2=1,h1=1,h2=3(舍去);当2h5时,y=(xh)2的最大值为0,不符合题意;当h5时,有(5h)2=1,h3=4(舍去),h4=6综上所述:h的值为1或64(2018
3、泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x2时,y随x的增大而增大,且2x1时,y的最大值为9,则a的值为()A1或2B或CD1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由2x1时,y的最大值为9,可得x=1时,y=9,即可求出a二次函数y=ax2+2ax+3a2+3(其中x是自变量),对称轴是直线x=1,当x2时,y随x的增大而增大,a0,2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a6=0,a=1,或a=2(不合题意舍去)5(2018滨州)如图,若二次函数y=ax2+bx+c(a0)图象的
4、对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(1,0),则二次函数的最大值为a+b+c;ab+c0;b24ac0;当y0时,1x3,其中正确的个数是()A1B2C3D4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案二次函数y=ax2+bx+c(a0)图象的对称轴为x=1,且开口向下,x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故正确;当x=1时,ab+c=0,故错误;图象与x轴有2个交点,故b24ac0,故错误;图象的对称轴为x=1,与x轴交于点A、点B(1,0),A(3,0),故当y0时,1x3,故正确6(2018连云港)已知学校航模组设计
5、制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=t2+24t+1则下列说法中正确的是()A点火后9s和点火后13s的升空高度相同B点火后24s火箭落于地面C点火后10s的升空高度为139mD火箭升空的最大高度为145m【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=t2+24t+1=
6、(t12)2+145知火箭升空的最大高度为145m,此选项正确;7(2018成都)关于二次函数y=2x2+4x1,下列说法正确的是()A图象与y轴的交点坐标为(0,1)B图象的对称轴在y轴的右侧C当x0时,y的值随x值的增大而减小Dy的最小值为3【分析】根据题目中的函数解析式可以判断各个选项中的结论是否在成立,从而可以解答本题y=2x2+4x1=2(x+1)23,当x=0时,y=1,故选项A错误,该函数的对称轴是直线x=1,故选项B错误,当x1时,y随x的增大而减小,故选项C错误,当x=1时,y取得最小值,此时y=3,故选项D正确,8(2018凉州区)如图是二次函数y=ax2+bx+c(a,b
7、,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1对于下列说法:ab0;2a+b=0;3a+c0;a+bm(am+b)(m为实数);当1x3时,y0,其中正确的是()ABCD【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=1时,y=ab+c;然后由图象确定当x取何值时,y0对称轴在y轴右侧,a、b异号,ab0,故正确;对称轴x=1,2a+b=0;故正确;2a+b=0,b=2a,当x=1时,y=ab+c0,a(2a)+c=3a+c0,故错误;根据图示知,当m=1时,有
8、最大值;当m1时,有am2+bm+ca+b+c,所以a+bm(am+b)(m为实数)故正确如图,当1x3时,y不只是大于0故错误A9(2018岳阳)抛物线y=3(x2)2+5的顶点坐标是()A(2,5)B(2,5)C(2,5)D(2,5)【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(h,k)即可求解抛物线y=3(x2)2+5的顶点坐标为(2,5),C10(2018宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P若点P的横坐标为1,则一次函数y=(ab)x+b的图象大致是()ABCD【分析】根据二次函数的图象可以判断a、b、ab的正负情况,从而可以得到一次
9、函数经过哪几个象限,本题得以解决由二次函数的图象可知,a0,b0,当x=1时,y=ab0,y=(ab)x+b的图象在第二、三、四象限,11(2018达州)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2下列结论:abc0;9a+3b+c0;若点M(,y1),点N(,y2)是函数图象上的两点,则y1y2;a其中正确结论有()A1个B2个C3个D4个【分析】根据二次函数的图象与系数的关系即可求出答案由开口可知:a0,对称轴x=0,b0,由抛物线与y轴的交点可知:c0,abc0,故错误;抛物线与x轴交于点
10、A(1,0),对称轴为x=2,抛物线与x轴的另外一个交点为(5,0),x=3时,y0,9a+3b+c0,故正确;由于2,且(,y2)关于直线x=2的对称点的坐标为(,y2),y1y2,故正确,=2,b=4a,x=1,y=0,ab+c=0,c=5a,2c3,25a3,a,故正确12(2018青岛)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()【分析】根据反比例函数图象一次函数图象经过的象限,即可得出0、c0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=0,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论观察函数图象可
11、知:0、c0,二次函数y=ax2+bx+c的图象对称轴x=0,与y轴的交点在y轴负正半轴13(2018天津)已知抛物线y=ax2+bx+c(a,b,c为常数,a0)经过点(1,0),(0,3),其对称轴在y轴右侧有下列结论:抛物线经过点(1,0);方程ax2+bx+c=2有两个不相等的实数根;3a+b3其中,正确结论的个数为()A0B1C2D3【分析】由抛物线过点(1,0),对称轴在y轴右侧,即可得出当x=1时y0,结论错误;过点(0,2)作x轴的平行线,由该直线与抛物线有两个交点,可得出方程ax2+bx+c=2有两个不相等的实数根,结论正确;由当x=1时y0,可得出a+bc,由抛物线与y轴交
12、于点(0,3)可得出c=3,进而即可得出a+b3,由抛物线过点(1,0)可得出a+b=2a+c,结合a0、c=3可得出a+b3,综上可得出3a+b3,结论正确此题得解抛物线过点(1,0),对称轴在y轴右侧,当x=1时y0,结论错误;过点(0,2)作x轴的平行线,如图所示该直线与抛物线有两个交点,方程ax2+bx+c=2有两个不相等的实数根,结论正确;当x=1时y=a+b+c0,a+bc抛物线y=ax2+bx+c(a,b,c为常数,a0)经过点(0,3),c=3,a+b3当a=1时,y=0,即ab+c=0,b=a+c,a+b=2a+c抛物线开口向下,a0,a+bc=3,3a+b3,结论正确14(2018德州)如图,函数y=ax22x+1和y=axa(a是常数,且a0)在同一平面直角坐标系的图象可
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1