ImageVerifierCode 换一换
格式:DOCX , 页数:18 ,大小:396.29KB ,
资源ID:14532492      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14532492.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(最新抛物线与圆综合探究题含答案Word文档下载推荐.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

最新抛物线与圆综合探究题含答案Word文档下载推荐.docx

1、例2、已知:在平面直角坐标系xOy中,一次函数y=kx-4k的图象与x轴交于点A,抛物线经过O、A两点。 试用含a的代数式表示b; 设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分。若将劣弧沿x轴翻折,翻折后的劣弧落在D内,它所在的圆恰与OD相切,求D半径的长及抛物线的解析式; 设点B是满足中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得?若存在,求出点P的坐标;若不存在,请说明理由。(1)解法一:一次函数的图象与x轴交于点A 点A的坐标为(4,0)抛物线经过O、A两点 解法二:一次函数的图象与x轴交于点A 点A的坐标为(4,0)抛物线经过O、

2、A两点 抛物线的对称轴为直线 (2)解:由抛物线的对称性可知,DODA点O在D上,且DOADAO 又由(1)知抛物线的解析式为点D的坐标为() 当时, 如图1,设D被x轴分得的劣弧为,它沿x轴翻折后所得劣弧为,显然所在的圆与D关于x轴对称,设它的圆心为D 点D与点D也关于x轴对称点O在D上,且OD与D相切 点O为切点DOOD DOADOA45ADO为等腰直角三角形点D的纵坐标为 抛物线的解析式为 当时, 同理可得: 抛物线的解析式为 综上,D半径的长为,抛物线的解析式为或 (3)解答:抛物线在x轴上方的部分上存在点P,使得 设点P的坐标为(x,y),且y0 当点P在抛物线上时(如图2) 点B是

3、D的优弧上的一点 过点P作PEx轴于点E 由解得:(舍去) 点P的坐标为 当点P在抛物线上时(如图3) 同理可得, 由解得:(舍去) 点P的坐标为 综上,存在满足条件的点P,点P的坐标为 或例3、如图,在直角坐标系中,C过原点O,交x轴于点A(2,0),交y轴于点B(0,)。 求圆心的坐标; 抛物线yax2bxc过O、A两点,且顶点在正比例函数yx的图象上,求抛物线的解析式; 过圆心C作平行于x轴的直线DE,交C于D、E两点,试判断D、E两点是否在中的抛物线上; 若中的抛物线上存在点P(x0,y0),满足APB为钝角,求x0的取值范围。(1)C经过原点O, AB为C的直径。 C为AB的中点。过

4、点C作CH垂直x轴于点H,则有CHOB,OHOA1。圆心C的坐标为(1,)。(2)抛物线过O、A两点,抛物线的对称轴为x1。抛物线的顶点在直线yx上, 顶点坐标为(1,)把这三点的坐标代入抛物线抛物线yax2bxc,得解得抛物线的解析式为。 (3)OA2,OB2,.即C的半径r2。D(3,),E(1,)代入检验,知点D、E均在抛物线上(4)AB为直径,当抛物线上的点P在C的内部时,满足APB为钝角。1x00,或2x03。例4、如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C。 求抛物线的解析式及点A、B、C的坐标; 若直线y

5、=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形; 点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,若存在,请求出点P的坐标;(1)由抛物线的顶点是M(1,4),设解析式为 又抛物线经过点N(2,3),所以 解得a1 所以所求抛物线的解析式为y令y0,得解得:得A(1,0) B(3,0) ;令x0,得y3,所以 C(0,3).(2)直线y=kx+t经过C、M两点,所以即k1,t3 直线解析式为yx3. 令y0,得x3,故D(3,0) CD 连接AN,过N做x轴的垂线,垂足为F. 设过A、N两

6、点的直线的解析式为ymxn, 则解得m1,n1 所以过A、N两点的直线的解析式为yx1 所以DCAN. 在RtANF中,AN3,NF3,所以AN 所以DCAN。 因此四边形CDAN是平行四边形.(3)假设在x轴上方存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,设P(1,u) 其中u0,则PA是圆的半径且过P做直线CD的垂线,垂足为Q,则PQPA时以P为圆心的圆与直线CD相切。由第(2)小题易得:MDE为等腰直角三角形,故PQM也是等腰直角三角形, 由P(1,u)得PEu, PM|4-u|, PQ由得方程:,解得,舍去负值u ,符合题意的u,所以,满足题意的点P存在,其坐标

7、为(1,).例5、已知:如图,抛物线与x轴交于A、B两点,与y轴交于C点,ACB90, 求m的值及抛物线顶点坐标; 过A、B、C的三点的M交y轴于另一点D,连结DM并延长交M于点E,过E点的M的切线分别交x轴、y轴于点F、G,求直线FG的解析式; 在条件下,设P为上的动点(P不与C、D重合),连结PA交y轴于点H,问是否存在一个常数k,始终满足AHAPk,如果存在,请写出求解过程;如果不存在,请说明理由.由抛物线可知,点C的坐标为(0,m),且m0.设A(x1,0),B(x2,0).则有x1x23m又OC是RtABC的斜边上的高,AOCCOB,即x1x2m2m23m,解得m0或m3而m0, 故

8、只能取m3这时,故抛物线的顶点坐标为(,4)解法一:由已知可得:M(,0),A(,0),B(3,0),C(0,3),D(0, 3)抛物线的对称轴是x,也是M的对称轴,连结CEDE是M的直径,DCE90,直线x,垂直平分CE,E点的坐标为(2,3),AOCDOM90,ACOMDO30,ACDE ACCB,CBDE又FGDE,FGCB由B(3,0)、C(0,3)两点的坐标易求直线CB的解析式为:y3可设直线FG的解析式为yn,把(2,3)代入求得n5故直线FG的解析式为y5解法二:令y0,解30得x1,x23 ,即A(,0),B(3,0)根据圆的对称性,易知:M半径为2, M(,0)在RtBOC中

9、,BOC90,OB3,OC3CBO30,同理,ODM30。而BMEDMO,DOM90,DEBCDEFG,BCFGEFMCBO30在RtEFM中,MEF90,ME2,FEM30,MF4,OFOMMF5,F点的坐标为(5,0)在RtOFG中,OGOFtan3055G点的坐标为(0,5)直线FG的解析式为y5(解法二的评分标准参照解法一酌定)解法一:存在常数k12,满足AHAP12连结CP由垂径定理可知,PACH(或利用PABCACO)又CAHPAC,ACHAPC即AC2AHAP在RtAOC中,AC2AO2OC2()23212(或利用AC2AOAB412AHAP12AP12设AHx,APy由相交弦定

10、理得HDHCAHHP即化简得:xy12即AH例6、抛物线()交x轴于点A(-1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的M恰好过点C. (1)求顶点D的坐标 (用的代数式表示) ;(2)求抛物线的解析式; (3)抛物线上是否存在点P使PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.(1)(方法一)由题意:设抛物线的解析式为 点C(0,3a),D(1,4a)(方法二)由题意:,解得(下同方法一)(2)(方法一)过点D作DEy轴于点E,易证DECCOB故抛物线的解析式为:(方法二)过点D作DEy轴于点E,过M作MGy轴于点G,设M交x轴于另一点H,交y轴于另一点F

11、,可先证四边形OHDE为矩形,则OHDE1,再证OFCEa,由OHOBOFOC得:, (下同法一)(3)符合条件的点P存在,共3个若BPD90,P点与C点重合,则P1(0,3)(P1表示第一个P点,下同)若DBP90,过点P2作P2Rx轴于点R,设点P2由BP2RDBH得,即,解得或(舍去)故若BDP90,设DP3的延长线交y轴于点N,可证EDN HDB【EDN=HDB,两个边相互垂直的角相等或者互补】,求得EN,N(0,)求得DN的解析式为求抛物线与直线DN的交点得P3() ,综上所述:符合条件的点P为(0,3)、()例7、已知抛物线y=ax2+bx+c(a0)与x轴交于不同的两点A和B(4

12、,0),与y轴交于点C(0,8),其对称轴为x=1. 求此抛物线的解析式; 过A、B、C三点作O与y轴的负半轴交于点D,求经过原点O且与直线AD垂直(垂足为E)的直线OE的方程; 设O与抛物线的另一个交点为P,直线OE与直线BC的交点为Q,直线x=m与抛物线的交点为R,直线x=m与直线OE的交点为S。是否存在整数m,使得以点P、Q、R、S为顶点的四边形为平行四边形?若存在,求出m的值;(1)由已知,有解得 抛物线的解析式是 y=-x2+2x+8 . (2)令y=0,得方程-x2+2x+80,解得x1=-2,x2=4. 点A的坐标为(-2,0).在O中,由相交弦定理,得OA|OB|=|OC|OD

13、|, 即24=8|OD|,|OD|=1. 点D在y轴的负半轴上,点D的坐标为(0,-1). 在RtAOD中,|OA|=2,|OD|=1,OEAD,由勾股定理,有AD=. 又|OA|OD|=|AD|OE|,|OE|=. |OA|2=|AE|AD|,即22=|AE|,|AE|=.同理,由|OD|2=|DE|AD|,得|DE|=.设点E(x,y),且x0,y0. 在RtAOE中,|AE|OE|=|y|OA|, |y|=,y=-. 在RtDOE中,|DE|OE|=|x|OD|,|x|=,x=-.点E的坐标是(-,-). 设直线OE的方程为y=kx (k0). 直线OE经过点E(-,-),-=-k,K=2. 直线OE的方程为y=2x. (3)在O中,对称轴x=1垂直平分弦AB,由垂径定理的推

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1