1、(3)幂指数不能随便约分.如.要点二、根式的概念和运算法则1n次方根的定义:若xn=y(nN*,n1,yR),则x称为y的n次方根,即x=.n为奇数时, y的奇次方根有一个,是负数,记为;零的奇次方根为零,记为;n为偶数时,正数y的偶次方根有两个,记为;负数没有偶次方根;零的偶次方根为零,记为.2两个等式(1)当且时,;(2)计算根式的结果关键取决于根指数n的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成的形式,这样能避免出现错误指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算 负指数幂化为正指数幂的倒数底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如
2、),先要化成假分数(如15/4),然后要尽可能用幂的形式表示,便于用指数运算性质在化简运算中,也要注意公式:a2b2(ab)(ab),a3b3(ab)(a2abb2),a3b3(ab)(a2abb2),(ab)2a22abb2,(ab)3a33a2b3ab2b3,的运用,能够简化运算.指数函数及其性质要点一、指数函数的概念:函数y=ax(a0且a1)叫做指数函数,其中x是自变量,a为常数,函数定义域为R.(1)形式上的严格性:只有形如y=ax(a0且a1)的函数才是指数函数像,等函数都不是指数函数(2)为什么规定底数a大于零且不等于1:如果,则对于一些函数,比如,当时,在实数范围内函数值不存在
3、如果,则是个常量,就没研究的必要了。而a=0时y=0没意义要点二、指数函数的图象:y=ax0a-图象(1)当底数大小不定时,必须分“”和“”两种情形讨论。(2)指数函数与的图象关于轴对称。要点三、指数函数底数变化与图像分布规律 则:0ba1dc观察可知,底数越接近1,图象曲线越平缓,底数越远离1,图象曲线越陡,而且指数函数都过点(0,1)又即:x(0,+)时, (底大幂大) x(,0)时,(底小幂小)要点四、指数式大小比较方法(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较.(2)中间量法:(3)分类讨论法(4)比较法比较法有作差比较与作商比较两种,其原理分别为:若;当两个式子均
4、为正值的情况下,可用作商法,判断,或即可对数及对数运算要点一、对数概念1.对数的概念如果,那么数b叫做以a为底N的对数,记作:logaN=b.其中a叫做对数的底数,N叫做真数.对数式logaN=b中各字母的取值范围是:0且a1, N0, bR.2.对数具有下列性质:(1)0和负数没有对数,即;(2)1的对数为0,即;(3)底的对数等于1,即.3两种特殊的对数通常将以10为底的对数叫做常用对数,.以e(e是一个无理数,)为底的对数叫做自然对数, .要点二、对数的运算法则已知(1) 正因数的积的对数等于同一底数各个因数的对数的和; (2) 两个正数的商的对数等于被乘数的对数减去除数的对数;(3)
5、正数的幂的对数等于幂的底数的对数乘以幂指数;(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log2(-3)(-5)=log2(-3)+log2(-5)是不成立的,因为虽然log2(-3)(-5)是存在的,但log2(-3)与log2(-5)是不存在的.(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:错误1:loga(MN)=logaMlogaN, 错误2: (MN)=logaMlogaN,要点三、对数公式1对数恒等式:2换底公式同底对数才能运算,底数不同时可考虑进行换底,在a0, a1, M0的
6、前提下有:(1) 令 logaM=b, 则有ab=M, (ab)n=Mn,即, 则所以得出结论:.(2) ,令logaM=b, 则有ab=M, 则有 即, 即,即当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:对数函数及其性质要点一、对数函数的概念1函数y=logax(a0,a1)叫做对数函数.其中是自变量,函数的定义域是,值域为2判断一个函数是对数函数是形如的形式,即必须满足以下条件:(1)系数为1;(2)底数为大于0且不等于1的常数;(3)对数的真数仅有自变量(1)只有形如y=logax(a0,a1)的函数才叫做对
7、数函数,像等函数,它们是由对数函数变化得到的,都不是对数函数。(2)求对数函数的定义域时应注意:对数函数的真数要求大于零,底数大于零且不等于1;对含有字母的式子要注意分类讨论。要点二、对数函数的图象0a1a1(1)关于对数式logaN的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.(2)以1为分界点,当a,N同侧时,logaN0;当a,N异侧时,logaN0.(3)由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略2底数变化与图象变化
8、的规律在同一坐标系内,a越接近1,图象越陡,a越远离1,图象越平缓。这刚好和指数函数的规律相反 所以可以总结出一句话,指数近一缓,对数近一陡。要点四、反函数1反函数的定义一般地,设函数y=f(x)(xA)的值域是B,根据这个函数中x、 y 的关系,用y把x表示出,得到x= g(y)。若对于y在B中的任何一个值,通过x= g(y) (这时候x= g(y)里面的y是自变量,x是因变量),x在A中都有唯一的值和它对应,那么这个函数x= g(y)(xB)叫做函数y=f(x)(xA)的反函数,记作y=f -1 (x) 。反函数y=f -1(x)的定义域、值域分别是函数y=f(x)的值域、定义域由定义可以
9、看出,函数y=f(x)的定义域A正好是它的反函数y=f-1 (x)的值域;函数y=f(x)的值域B正好是它的反函数y=f-1 (x)的定义域由定义可知:对数就是指数变换而来的,因此对数函数是和它底数相同的指数函数的反函数。变化关系如右图: 不是每个函数都有反函数,有些函数没有反函数,如y=x2一般说来,单调函数有反函数2反函数的性质(1)互为反函数的两个函数的图象关于直线对称(2)若函数图象上有一点,则必在其反函数图象上,反之,若在反函数图象上,则必在原函数图象上幂函数及图象变换要点一、幂函数概念形如的函数,叫做幂函数,其中x是自变量, 为常数.幂函数必须是形如的函数,幂函数底数为单一的自变量
10、x,系数为1,指数为常数.例如:等都不是幂函数.要点二、幂函数的图象及性质各种幂函数的图象:(4);(5)幂函数随着的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴2.作幂函数图象的步骤如下:(1)先作出第一象限内的图象;(2)若幂函数的定义域为(0,+)或
11、0,+),作图已完成;若在(-,0)或(-,0上也有意义,则应先判断函数的奇偶性如果为偶函数,则根据y轴对称作出第二象限的图象;如果为奇函数,则根据原点对称作出第三象限的图象.3.幂函数解析式的确定(1)借助幂函数的定义,设幂函数或确定函数中相应量的值(2)结合幂函数的性质,分析幂函数中指数的特征(3)如函数是幂函数,求的表达式,就应由定义知必有,即4.幂函数值大小的比较(1)比较函数值的大小问题一般是利用函数的单调性,当不便于利用单调性时,可与0和1进行比较常称为“搭桥”法(2)比较幂函数值的大小,一般先构造幂函数并明确其单调性,然后由单调性判断值的大小(3)常用的步骤是:构造幂函数;比较底
12、的大小;由单调性确定函数值的大小要点三、初等函数图象变换基本初等函数包含以下九种函数:正比例函数、反比例函数、一次函数、二次函数、幂函数、指数函数、对数函数、三角函数、耐克函数。由基本初等函数经过四则运算以及简单复合所得的函数叫初等函数如:的图象变换,(1)平移变换y=f(x)y=f(xa) 图象左()、右()平移y=f(x)y=f(x)b 图象上()、下()平移(2)对称变换y=f(x) y=f(x), 图象关于y轴对称y=f(x) y=f(x) , 图象关于x轴对称y=f(x) y=f(x) 图象关于原点对称y=f(x) 图象关于直线y=x对称(3)翻折变换: y=f(x) y=f(|x|),把y轴右边的图象保留,然后将y轴左边部分关于y轴对称(注意:它是一个偶函数) y=f(x) y=|f(x)| 把x轴上方的图象保留,x轴下方的图象关于x轴对称(1)函数图象是由基本初等函数的图象经过以上变换变化而来。(2)若f(ax)f(ax),则函数y=f(x)的图象关于直线x=a对称。指数函数、对数函数、幂函数配置习题指数幂的概念与运算1
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1