ImageVerifierCode 换一换
格式:DOCX , 页数:65 ,大小:135.78KB ,
资源ID:14422035      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14422035.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(完整升级版八年级北师大九年级数学教案Word下载.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

完整升级版八年级北师大九年级数学教案Word下载.docx

1、 本套教材选用如下命题作为公理 : 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 2.两条平行线被第三条直线所截,同位角相等; 3.两边夹角对应相等的两个三角形全等; (SAS) 4.两角及其夹边对应相等的两个三角形全等; (ASA) 5.三边对应相等的两个三角形全等; (SSS) 6.全等三角形的对应边相等,对应角相等. 由公理5、3、4、6可容易证明下面的推论:推论两角及其中一角的对边对应相等的两个三角形全等。(AAS)证明过程:已知:A=D,B=E,BC=EF求证:ABCDEF证明:A+B+C=180,D+E+F=180(三角形内角和等于180C=180-(A+B)F

2、=180-(D+E)又A=D,B=E(已知)C=F又BC=EF(已知)ABCDEF(ASA)定理:等腰三角形的两个底角相等。这一定理可以简单叙述为:等边对等角。如图,在ABC中,ABAC。BC取BC的中点D,连接AD。ABAC,BDCD,ADAD,ABCACD (SSS)B=C (全等三角形的对应边角相等)(让同学们通过探索、合作交流找出其他的证明方法。做BAC的平分线,交BC边于D;过点A做ADBC。学生指出该定理的条件和结论,写出已知、求证,画出图形,并选择一种方法进行证明。想一想:在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?(应让学生回顾前面的证明过程,思考线段AD

3、具有的性质和特征,讨论图中存在的相等的线段和相等的角,发现等腰三角形性质定理的推论,从而得到结论,这一结合通常简述为“三线合一”。推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。随堂练习:做教科书第4页第1,2题。(引导学生分析证明方法,学生动手证明,写出证明过程。六、课堂小结:通过这节课的学习你学到了什么知识?(学生小结:通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索发现猜想证明”的过程。探体会了反证法的含义。七、作业:1、基础作业:P5页习题1.1 1、2。 2、拓展作业:目标检测3、预习作业:P5-6页 议一议八、板书设计:九

4、、课后记:1.1、你能证明它们吗(二)1、进一步了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。3、 能够用综合法证明等腰三角形的判定定理。4、 了解反证法的推理方法。5、 会运用“等角对等边”解决实际应用问题及相关证明问题。正确叙述结论及正确写出证明过程。熟悉作为证明基础的几条公理的内容,通过学习,掌握证明的基本步骤和书写格式。等腰三角形的定理应用及由特殊结论归纳出一般结论。三、教学方法:探究式教学法 自主探究与合作探究四、教学过程:复习回顾:你知道等腰三角形具有怎样的性质吗?、

5、探索发现猜想证明1、 引导探索:等腰三角形顶角的平分线、底边上的中线和高线具有上述的性质,那么,两底角的平分线、两腰上的中线和高线又具有怎样的性质呢?(提出问题,激发学生探究的欲望。学生猜想)2、 探究中发现:在等腰三角形中做出两底角的平分线,你会发现图中有那些相等的线段?你能用文字叙述你的结论吗?(学生动手画图、探索发现相等的线段并思考为什么相等)3、证明:(1) 例1 证明:等腰三角形两底角的平分线相等。(引导学生分清条件和结论、画图、写出已知、求证。如图,在ABC中,ABAC,BD,CE是 ABC的角平分线。BDCE(一生口述证明过程,然后写出证明过程。(略)此题还有其它的证法吗?(2)

6、 你能证明等腰三角形两条腰上的中线相等吗?高呢? (引导学生分清条件和结论、画图、写出已知、求证并证明。其它证法合作交流完成。4、议一议1:在上图的等腰ABC中,如果ABD1/3ABC, ACE1/3ACB,那么BDCE吗?如果ABD1/4ABC, ACE1/4ACB呢?由此你能得到一个什么结论?(根据图形引导学生分析归纳得出一般结论。学生分组思考、交流,在充分讨论的基础上得出一般结论写出证明过程。(3) 如果AD1/2AC,AE1/2AB, 那么BDCE吗?如果AD1/3AC,AE1/3AB, 呢?议一议2:把“等边对等角”反过来还成立吗?你能证明?定理证明在ABC中B=CAB=AC (引导

7、学生证明定理)方法如下:(课堂小结1:(1) 归纳判定等腰三角形判定有几种方法,(2) 证明两条线段相等的方法有哪几种。(讨论、交流)在ABC中,AB=AC,D在AB上,DEACDB=DE想一想:小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,你认为这个结论成立吗?如果成立,你能证明它?证明P8反证法的概念 P8课堂小结2:了解了什么证明方法?掌握证明的基本步骤和书写格式。等腰三角形的判定定理。了解反证法的推理方法。五、作业:P9页习题1.2 1、2、3。目标检测3、预习作业:P10-12页 做一做六、板书设计:七、课后记:11 你能证明他们吗?(第三课时)1、进一步学

8、习证明的基本步骤和书写格式。 2、掌握证明与等边三角形、直角三角形有关的性质定理和判定定理。二、教学重点、难点:关于综合法在证明过程中的应用。三、教学过程:温故知新1、已知:ABC,ACB的平分线相交于F,过F作DEBC,交AB于D,交AC于E(1) 找出图中的等腰三角形(2) BD,CE,DE之间存在着怎样的关系?(3) 证明以上的结论。2、复习关于反证法的相关知识练习:在一个三角形中,至少有一个内角小于或等于60(笔试,进一步巩固学习证明的基本步骤和书写格式)学一学1、 探索问题:一个等腰三角形满足什么条件时便成为等边三角形?你认为有一个角等于60的等腰三角形是等边三角形吗?你能证明你的思

9、路吗?(把你的思路与同伴进行交流。 定理:有一个角等于60的等腰三角形是等边三角形。2、 做一做:用两个含30角的三角尺,能拼成一个怎样的三角形?能拼成一个等边三角形吗?说说你的理由。由此你能想到,在直角三角形中,30角所对的直角边与斜边有怎样的大小关系?能证明你的结论吗?(提示学生根据两个三角尺拼出的图形发现结论,并证明)在ABC中,ACB=90,A=30,则B=60延长BC至D,使CD=BC,连接 ADACB=90ACD=90AC=ACABCADC(SSS)AB=AD(全等三角形的对应边相等)ABD是等边三角形 BC=BD=AB 得到的结论:在直角三角形中,如果一个锐角等于30,那么它所对

10、的直角边等于斜边的一半。 3、例题学习 等腰三角形的底角为15,腰长为2a ,求腰上的高。 已知:在ABC中,AB=AC=2a,ABC=ACB=15 度,CD是腰AB上的高 求:CD的长解:ABC=ACB=15DAC=ABC+ACB=15+15=30CD=AC=2a=a(在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半) 4、练习:课本12页 随堂练习 1四、课堂小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)P13页 习题1.3 1、2、3题P15-17页 读一读 “勾股定理的证明”直角三角形(第一课时)教学目标:1、进一步掌握推理证明的方法,发展演绎推

11、理能力。2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。教学过程:引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。实际上,利用公理及其推导出的定理,我们能够证明勾股定理。直角三角形两条直角边的平方和等于斜边的平方。如图,在ABC中,C=90,BC=a,AC=b,AB=c,延长CB至点D,使BD=b,作EBD=A,并取BE=c,连接ED、AE,则ABCBED。BDE=90,ED=a(全等三角形的对应角相等,对应边相等)。四边形ACDE是直角梯形。S梯形ACDE = (a+b)(a-b)= (a+b)2ABE=180-ABC-EBD=180- 90=90AB=BESABC = c2S梯形ACDE = SABE +SABC+ SBED , (a+b)2=c2+ab+ab 即a2+ab+b2=c2+ab+ab a2+b2=c2反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?如图,在ABC,AB2+AC2=BC2,求证:ABC是直角三角形。作出RtABC,使A=90,AB=AB,AC=AC,则AB2+AC2=BC2 (勾股定理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1