ImageVerifierCode 换一换
格式:DOCX , 页数:56 ,大小:246.48KB ,
资源ID:14371297      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14371297.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(最新专题六导数与函数高考大题类型自己总结Word文件下载.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

最新专题六导数与函数高考大题类型自己总结Word文件下载.docx

1、则在处取得最小值,. 则.综上所述,时,成立的的范围是. 13分类型二:给出单调递增递减区间等价于恒成立问题2、已知函数. ()若函数的图象在处的切线斜率为,求实数的值; ()求函数的单调区间; ()若函数在上是减函数,求实数的取值范围.() 1分 由已知,解得. 3分(II)函数的定义域为.(1)当时, ,的单调递增区间为;5分(2)当时. 当变化时,的变化情况如下:-+极小值 由上表可知,函数的单调递减区间是; 单调递增区间是. 8分 (II)由得,9分 由已知函数为上的单调减函数,则在上恒成立,即在上恒成立. 即在上恒成立. 11分令,在上,所以在为减函数. , 所以. 类型三:零点个数

2、问题3、已知函数(,为常数),且为的一个极值点() 求的值;() 求函数的单调区间; () 若函数有3个不同的零点,求实数的取值范围 () 函数f (x)的定义域为(0,+)1分 f (x) = 2分,则a = 14分 ()由() 知 f (x) = 6分 由f (x) 0可得x 2或x 1,由f (x) 0可得1 x 2 函数f ( x ) 的单调递增区间为 (0 ,1) 和 (2,+ ),单调递减区间为 (1 , 2 ) 9分 () 由()可知函数f (x)在(0,1)单调递增,在(1,2)单调递减,在(2,+)单调递增且当x =1或x =2时,f (x) = 0 10分 f (x) 的极

3、大值为 11分 f (x)的极小值为 12分 由题意可知 则 14分 类型四:一般的恒成立问题4已知f(x)xlnxax,g(x)x22,()对一切x(0,),f(x)g(x)恒成立,求实数a的取值范围;()当a1时,求函数f(x)在m,m3(m0)上的最值;1.解:()对一切恒成立,即恒成立.也就是在恒成立.1分令 ,则,2分在上,在上,因此,在处取极小值,也是最小值,即,所以.4分()当,由得. 6分当时,在上,在上因此,在处取得极小值,也是最小值. .由于因此, 8分当,因此上单调递增,类型五:用构造法证明不等式问题5、 已知函数,曲线在点处的切线方程为 (I)求,的值; (II)证明:

4、当,且时, () 由于直线的斜率为,且过点,故即 解得,。 ()由()知,所以 考虑函数,则所以当时,故当当时,从而当类型六:最值问题6、设函数,其中为自然对数的底数.()记曲线在点(其中)处的切线为,与轴、轴所围成的三角形面积为,求的最大值.()由已知,所以, 2分由,得, 3分所以,在区间上,函数在区间上单调递减; 4分在区间上,函数在区间上单调递增; 5分即函数的单调递减区间为,单调递增区间为.()因为,所以曲线在点处切线为:. 7分切线与轴的交点为,与轴的交点为, 9分因为,所以, 10分, 12分在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,所以,的最大

5、值为. 近三年新课标导数高考试题 2011 1、(2)下列函数中,既是偶函数又在单调递增的函数是B(A) (B) (C) (D) 2、(9)由曲线,直线及轴所围成的图形的面积为C(A) (B)4 (C) (D)63、(12)函数的图像与函数的图像所有交点的横坐标之和等于D (A)2 (B) 4 (C) 6 (D)84、(21)(本小题满分12分)已知函数,曲线在点处的切线方程为。()求、的值;()如果当,且时,求的取值范围。(21)解:() 解得,。()由()知,所以。考虑函数,则。(i)设,由知,当时,。而,故当时,可得;当x(1,+)时,h(x)从而当x0,且x1时,f(x)-(+)0,即

6、f(x)+.(ii)设0k0,故 (x)0,而h(1)=0,故当x(1,)时,h(x)0,可得h(x)0,而h(1)=0,故当x(1,+)时,h(x)0,可得 h(x) 综合得,k的取值范围为(-,020125、(12)设点P在曲线y=ex 上,点Q在曲线y=ln(2x)上,则|pQ|最小值为B(A) 1-ln2 (B) (C)1+ln2 (D)6、(21)(本小题满分12分)已知函数f(x)满足(1)求f(x)的解析式及单调区间;(2)若求(a+1)b的最大值。【解析】(1) 令得: 得: 在上单调递增的解析式为 且单调递增区间为,单调递减区间为 (2)得 当时,在上单调递增 时,与矛盾 当

7、时,500元以上 12 24% 令;则世界上的每一个国家和民族都有自己的饰品文化,将这些饰品汇集到一起再进行新的组合,便可以无穷繁衍下去,满足每一个人不同的个性需求。 当时,的最大值为【2013年】(一)大学生的消费购买能力分析7、16、若函数f(x)=(1x2)(x2axb)的图像关于直线x=2对称,则f(x)的最大值是_.【命题意图】本题主要考查函数的对称性及利用导数求函数最值,是难题.经常光顾 偶尔会去 不会去【解析】由图像关于直线=2对称,则调研提纲:0=,(5) 资金问题0=,解得=8,=15,=,=我们女生之所以会钟爱饰品,也许是因为它的新颖,可爱,实惠,时尚,简单等。的确,手工艺

8、品价格适中。也许还有更多理由和意义。那么大学生最喜欢哪种手工艺品呢?此次调查统计如下图(1-3)当(,)(2, )时,0,当(,2)(,+)时,0,在(,)单调递增,在(,2)单调递减,在(2,)单调递增,在(,+)单调递减,故当=和=时取极大值,=16.8、(21)(本小题满分共12分)已知函数f(x)x2axb,g(x)ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y4x+2上海市劳动和社会保障局所辖的“促进就业基金”,还专门为大学生创业提供担保,贷款最高上限达到万元。()求a,b,c,d的值()若x2时, ,求k的取值范围。【命题意图】本题主要考查利用导数的几何意义求曲线的切线、函数单调性与导数的关系、函数最值,考查运算求解能力及应用意识,是中档题.(1)价格低【解析】()由已知得,7、你喜欢哪一类型的DIY手工艺制品?而=,=,=4,=2,=2,=2;4分()由()知,设函数=(),=,有题设可得0,即,令=0得,=,=2,(1)若,则20,当时,0,当时, 0,即在单调递减,在单调递增,故在=取最小值, 而=0,当2时,0,即恒成立,(2)若,则=,当2时,0,在(2,+)单调递增,而=0,(3)若,则=0,当2时,不可能恒成立,综上所述,的取值范围为1,.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1