ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:205.44KB ,
资源ID:14217105      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14217105.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新人教A版数学必修4导学案解析版第一章三角函数141正弦函数余弦函数的图象导学案Word下载.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

新人教A版数学必修4导学案解析版第一章三角函数141正弦函数余弦函数的图象导学案Word下载.docx

1、用光滑的曲线将12个终点依次从左至右连接起来,即得到函数ysin x,x0,2的图象,如图.因为终边相同的角有相同的三角函数值,所以函数ysin x,x2k,2(k1),kZ且k0的图象与函数ysin x,x0,2)的图象的形状完全一致.于是只要将函数ysin x,x0,2)的图象向左、向右平行移动(每次2个单位长度),就可以得到正弦函数ysin x,xR的图象,如图.思考2如何由正弦函数的图象通过图形变换得到余弦函数的图象?答案把ysin x,xR的图象向左平移个单位长度,即可得到ycos x,xR的图象.梳理正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线.知识点三“五点法”作正弦

2、函数、余弦函数的图象思考1描点法作函数图象有哪几个步骤?答案列表、描点、连线.思考2“五点法”作正弦函数、余弦函数在x0,2上的图象时是哪五个点?答案画正弦函数图象的五点(0,0)(,0)(2,0)画余弦函数图象的五点(0,1)(,1)(2,1)梳理“五点法”作正弦函数ysin x、余弦函数ycos x,x0,2图象的步骤:(1)列表x2sin x11cos x(2)描点画正弦函数ysin x,x0,2的图象,五个关键点是(0,0),(,0),(2,0);画余弦函数ycos x,x0,2的图象,五个关键点是(0,1),(,1),(2,1).(3)用光滑曲线顺次连接这五个点,得到正弦曲线、余弦曲

3、线的简图.类型一“五点法”作图的应用例1利用“五点法”作出函数y1sin x(0x2)的简图.解(1)取值列表:1sin x2描点连线,如图所示.反思与感悟作正弦曲线要理解几何法作图,掌握五点法作图.“五点”即ysin x或ycos x的图象在0,2内的最高点、最低点和与x轴的交点.“五点法”是作简图的常用方法.跟踪训练1用“五点法”作出函数y1cos x(0x2)的简图.解列表如下:1cos x描点并用光滑的曲线连接起来,如图.类型二利用正弦、余弦函数的图象求定义域例2求函数f(x)lg sin x的定义域.解由题意,得x满足不等式组即作出ysin x的图象,如图所示.结合图象可得x4,)(

4、0,).反思与感悟一些三角函数的定义域可以借助函数图象直观地观察得到,同时要注意区间端点的取舍.跟踪训练2求函数y的定义域.解为使函数有意义,需满足即0sin x.由正弦函数的图象或单位圆(如图所示),可得函数的定义域为x|2kx2k或2kx2k,kZ.类型三与正弦、余弦函数有关的函数零点问题命题角度1零点个数问题例3在同一坐标系中,作函数ysin x和ylg x的图象,根据图象判断出方程sin xlg x的解的个数.解建立平面直角坐标系xOy,先用五点法画出函数ysin x,x0,2的图象,再向右连续平移2个单位,得到ysin x的图象.描出点(1,0),(10,1),并用光滑曲线连接得到y

5、lg x的图象,如图所示.由图象可知方程sin xlg x的解有3个.反思与感悟三角函数的图象是研究函数的重要工具,通过图象可较简便的解决问题,这正是数形结合思想方法的应用.跟踪训练3方程x2cos x0的实数解的个数是 .答案2解析作函数ycos x与yx2的图象,如图所示,由图象可知,原方程有两个实数解.命题角度2参数范围问题例4方程sin(x)在0,上有两实根,求实数m的取值范围及两实根之和.解作出y1sin(x),y2的图象如图,由图象可知,要使y1sin(x),y2在区间0,上有两个不同的交点,应满足1,即m2.设方程的两实根分别为x1,x2,则由图象可知x1与x2关于x对称,于是x

6、1x22,所以x1x2.反思与感悟准确作出函数图象是解决此类问题的关键,同时应抓住“临界”情况进行分析.跟踪训练4若函数f(x)sin x2m1,x0,2有两个零点,求m的取值范围.解由题意可知,sin x2m10在0,2上有2个根,即sin x2m1有两个根,可转化为ysin x与y2m1两函数的图象有2个交点.由ysin x图象可知,12m11,且2m10,解得1m0,且m.m(1,)(,0).1.用“五点法”作y2sin 2x的图象时,首先描出的五个点的横坐标是()A.0,2 B.0,C.0,2,3,4 D.0,答案B解析“五点法”作图是当2x0,2时的x的值,此时x0,故选B.2.下列

7、图象中,ysin x在0,2上的图象是()答案D解析由ysin x在0,2上的图象作关于x轴的对称图形,应为D项.3.函数ycos x,x0,2的图象与直线y的交点有 个.解析作ycos x,x0,2的图象及直线y(图略),可知两函数图象有2个交点.4.函数y的定义域为 .答案2k,2k,kZ解析由题意知,自变量x应满足2sin x10,即sin x.由ysin x在0,2的图象,可知x,所以y的定义域为,kZ.5.请用“五点法”画出函数ysin的图象.解令X2x,则x变化时,y的值如下表:Xy描点画图:将函数在上的图象向左、向右平移即得ysin的图象.1.对“五点法”画正弦函数图象的理解(1

8、)与前面学习函数图象的画法类似,在用描点法探究函数图象特征的前提下,若要求精度不高,只要描出函数图象的“关键点”,就可以根据函数图象的变化趋势画出函数图象的草图.(2)正弦型函数图象的关键点是函数图象中最高点、最低点以及与x轴的交点.2.作函数yasin xb的图象的步骤:3.用“五点法”画的正弦型函数在一个周期0,2内的图象,如果要画出在其他区间上的图象,可依据图象的变化趋势和周期性画出.课时作业一、选择题1.对于正弦函数ysin x的图象,下列说法错误的是()A.向左右无限伸展B.与ycos x的图象形状相同,只是位置不同C.与x轴有无数个交点D.关于y轴对称解析由正弦曲线知,A,B,C均

9、正确,D不正确.2.用五点法画ysin x,x0,2的图象时,下列哪个点不是关键点()A. B. C.(,0) D.(2,0)答案A解析易知不是关键点.3.已知f(x)sin,g(x)cos,则将f(x)的图象()A.与g(x)的图象相同B.与g(x)的图象关于y轴对称C.向左平移个单位,得g(x)的图象D.向右平移个单位,得g(x)的图象解析f(x)sin,g(x)coscossin x,f(x)的图象向右平移个单位得到g(x)的图象.4.函数ysin x,x的简图是()5.方程sin x的根的个数是()A.7 B.8 C.9 D.10解析在同一坐标系内画出y和ysin x的图象如图所示.根

10、据图象可知方程有7个根.6.函数ycos x|cos x|,x0,2的大致图象为()解析由题意得y显然只有D合适.7.若函数y2cos x(0x2)的图象和直线y2围成一个封闭的平面图形,则这个封闭图形的面积是()A.4 B.8 C.2 D.4解析作出函数y2cos x,x0,2的图象,函数y2cos x,x0,2的图象与直线y2围成的平面图形为如图所示的阴影部分. 利用图象的对称性可知,该阴影部分的面积等于矩形OABC的面积,又OA2,OC2,S阴影部分S矩形OABC224.二、填空题8.函数f(x)lg cos x的定义域为 .答案解析由题意,得x满足不等式组即作出ycos x的图象,如图

11、所示.结合图象可得x.9.函数ysin x,x0,2的图象与直线y的交点为A(x1,y1),B(x2,y2),则x1x2 .答案3解析如图所示,x1x223.10.函数f(x)则不等式f(x)的解集是 .答案x|x0或2kx2k,kN解析在同一平面直角坐标系中画出函数f(x)和y的图象(图略),由图易得x0或2kx2k,kN.11.设0x2,且|cos xsin x|sin xcos x,则x的取值范围为 .解析由题意知sin xcos x0,即cos xsin x,在同一坐标系画出ysin x,x0,2与ycos x,x0,2的图象,如图所示.观察图象知x.三、解答题12.用“五点法”画出函数ysin x,x0,2

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1