ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:140.85KB ,
资源ID:14167701      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14167701.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《运筹学》习题集汇总Word文档格式.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

《运筹学》习题集汇总Word文档格式.docx

1、3x 284 max z 5x 16x 2 2x 1x 2213 找出下述LP 问题所有基解,指出哪些是基可行解,并确定最优解 (1)min z 5x 12x 23x 32x 41st 2x 13x 22 x 1,x 20x 12x 23x 34x 47 st 2x 12x 2x 3 2x 43x 1,x 2,x 3,x 4014 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。 1 maxz 10x 15x 23x 14x 29 st 5x 12x 28 x 1,x 202 maxz 2x 1x 23x 15x 215 st 6x 12x 22415 分别用大M 法与

2、两阶段法求解下列LP 问题。 1 minz 2x 13x 2x 3 x 14x 22x 38st 3x 12x 2 6 x 1,x 2 ,x 302 max z 4x 15x 2 x 3. 3x 12x 2 x 318St. 2x 1 x 2 4x 1 x 2 x 353 maxz 5x 13x 2 +6x3 x 12x 2 x 3 18 st 2x 1x 2 3 x3 16 x 1x 2 x 310 x 1,x 2 ,x 304 max z =10x 1+15x 2+12x 395x 1+3x 2+x 3-5x +6x +15x 15123st . x 352x 1+x 2+x , x ,

3、x 01231621.7某班有男生30人,女生20人,周日去植树。根据经验,一天男生平均每人挖坑20个,或栽树30棵,或给25棵树浇水;女生平均每人挖坑10个,或栽树20棵,或给15棵树浇水。问应怎样安排,才能使植树(包括挖坑、栽树、浇水)最多?请建立此问题的线性规划模型,不必求解。1.8某糖果厂用原料A 、B 、C 加工成三种不同牌号的糖果甲、乙、丙。已知各种牌号糖果中A 、B 、C 含量,原料成本,各种原料的每月限制用量,三种牌号糖果的单位加工费及售价如下表所示。问该厂每月应生产这三种牌号糖果各多少千克,使该厂获利最大?试建立此问题的线性规划的数学模型。甲 乙 丙 原料成本(元/千克 每月

4、限量(千克)A 6015 2.00 2000 B 1.50 2500 C 206050 1.00 1200 加工费(元/千克 0.50 0.40 0.30 售 价 3.40 2.85 2.251.9某商店制定712月进货售货计划,已知商店仓库容量不得超过500件,6月底已存货200件,以后每月初进货一次,假设各月份此商品买进售出单价如下表所示,问各月进货售货各多少,才能使总收入最多?请建立此问题的线性规划模型。 月 份 7 8 9 10 11 12 买进单价 28 24 25 27 23 231.10某厂接到生产A 、B 两种产品的合同,产品A 需200件,产品B 需300件。这两种产品的生产

5、都经过毛坯制造与机械加工两个工艺阶段。在毛坯制造阶段,产品A 每件需要2小时,产品B 每件需要4小时。机械加工阶段又分粗加工和精加工两道工序,每件产品A 需粗加工4小时,精加工10小时;每件产品B 需粗加工7小时,精加工12小时。若毛坯生产阶段能力为1700小时,粗加工设备拥有能力为1000小时,精加工设备拥有能力为3000小时。又加工费用在毛坯、粗加工、精加工时分别为每小时3元、3元、2元。此外在粗加工阶段允许设备可进行500小时的加班生产,但加班生产时间内每小时增加额外成本4.,5元。试根据以上资料,为该厂制订一个成本最低的生产计划。1.11某公司有三项工作需分别招收技工和力工来完成。第一

6、项工作可由一个技工单独完成,或由一个技工和两个力工组成的小组来完成。第二项工作可由一个技工或一个力工单独去完成。第三项工作可由五个力工组成的小组完成,或由一个技工领着三个力工来完成。已知技工和力工每周工资分别为100元和80元,他们每周都工作48小时,但他们每人实际的有效工作小时数分别为42和36。为完成这三项工作任务,该公司需要每周总有效工作小时数为:第一项工作10000小时。第二项工作20000小时,第三项工作30000小时。又能招收到的工人数为技工不超过400人,力工不超过800人。试建立数学模型,确定招收技工和力工各多少人。使总的工资支出为最少(3第二章 对偶与灵敏度分析21 写出以下

7、线性规划问题的DLP 1 minz 2x 12x 24x 3stx 13x 24x 3 2 2x 1 x 23x 3 3 x 14x 23x 3 5 x 1,x 20,x 3无约束 x 12x 22x 3 5 x 15x 2 x 3 3 4x 17x 23x 3 8 x 1无约束,x 20,x 302 max z 5x 16x 23x 33 max z c 1x 1c 2x 2c 3x 3a 11x 1a 12x 2a 13x 3 b 1a 21x 1a 22x 2a 23x 3 b 2 a 31x 1a 32x 2a 33x 3 b 3 x 10,x 20,x 3无约束22 st对于给出的L

8、P :minz 2x 13x 25x 36x 4 x 12x 23x 3x 4 2 2x 1x 2x 33x 4 3x j 0 (j=1,2,3,4) 1 写出DLP ;2 用图解法求解DLP ;3 利用2)的结果及根据对偶性质写出原问题的最优解。23 对于给出LP : maxz x 12x 2x 3x 1 x 2 x 3 2 x 1 x 2 x 3 1 2x 1 x 2 x 3 2 x 10, x 20,x 3无约束1 写出DLP ;2 利用对偶问题性质证明原问题目标函数值Z 124 已知LP : max z x 1x 2st x 1 x 2 x 3 22x 1 x 2 x 3 1 x j

9、04试根据对偶问题性质证明上述线性问题目标函数值无界。25 给出LP : maxz 2x 14x 2x 3x 4 x 1 3x 2 x 4 82x 1 x 2 6 st. x 2 x 3 x 46x 1 x 2 x 3 9 x j 02 已知原问题最优解X (2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。26 用对偶单纯形法求解下列线性规划问题 1 minz 4x 112x 218x 3x 1 3x 3 32 x22x 3 5 x j 0 (j=1,2,32 min z =5x 1+2x 2+4x 33x 1+x 2+2x 34st . 6x 1+3x 2+5x 310x , x

10、 , x 012327 考虑如下线性规划问题minz 60x 140x 280x 3 3x 12x 2 x 3 24x 1 x 23x 3 42x 12x 22x 3 3 x j 02 用对偶单纯形法求解原问题; 3 用单纯形法求解其对偶问题; 4 对比以上两题计算结果。28 已知LP :maxz 2x 1x 2x 3 x 1 x 2 x 36st x 12x 2 4 x 1,x 2,x 301 用单纯形法求最优解2 分析当目标函数变为maxz 2x 13x 2x 3时最优解的变化; 3 分析第一个约束条件右端系数变为3时最优解的变化。529 给出线性规划问题 maxz 2x 13x 2x 3

11、1/3x11/3x21/3x31 st 1/3x14/3x27/3x33 x j 01 目标函数中变量x 3的系数变为6;2 分别确定目标函数中变量x 1和x 2的系数C 1、C 2在什么范围内变动时最优解不变; 3 约束条件的右端由 1 变为 2 ; 3 32.10 某厂生产甲、乙两种产品,需要A 、B 两种原料,生产消耗等参数如下表(表中的消耗系数为千克/件)。(2)原料A 、B 的影子价格各为多少。(3)现有新产品丙,每件消耗3千克原料A 和4千克原料B ,问该产品的销售价格至少为多少时才值得投产。(4)工厂可在市场上买到原料A 。工厂是否应该购买该原料以扩大生产?在保持原问题最优基的不

12、变的情况下,最多应购入多少?可增加多少利润?3. 5 某玩具公司分别生产三种新型玩具,每月可供量分别为1000、2000、2000件,它们分别被送到甲、乙、丙三个百货商店销售。已知每月百货商店各类玩具预期销售量均为1500件,由于经营方面原因,各商店销售不同玩具的盈利额不同, 见下表。又知丙百货商店要求至少供应C 玩具1000件,而拒绝进A 玩具。求满足上述条件下使总盈利额最大的供销分配方案。甲 乙 丙 可供量A 5 4 1000B 16 8 9 2000 C 12 10 11 2000第三章 运输问题3132333.4 某市有三个面粉厂,他们供给三个面食加工厂所需的面粉,各面粉厂的产量、各面

13、食加工厂加工面粉的能力、各面食加工厂和各面粉厂之间的单位运价,均式于下表。假定在第1,2和3面食加工厂制作单位面粉食品的利润分别为12元、16元和11元,试确定使总效益最大的面粉分配计划(假定面粉厂和面食加工厂都属于同一个主管单位)。3.5 光明仪器厂生产电脑绣花机是以产定销的。已知1至6月份各月的生产能力、合同销量和单台电脑绣花机平均生产费用见下表:如果当月生产出来的机器当月不交货,则需要运到分厂库房, 已知上年末库存103台绣花机,每台增加运输成本0.1万元, 每台机器每月的平均仓储费、维护费为0.2万元。在7-8月份销售淡季,全厂停产1个月,因此在6月份完成销售合同后还要留出库存80台。加班生产机器每台增加成本1万元。问应如何安排1-6月份的生产,可使总的生产费用(包括运输、仓储、维护)

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1