1、D矩形的对边平行且相等选B由三段论的一般模式知应选B.4若大前提是:任何实数的平方都大于0,小前提是:aR,结论是:a20,那么这个演绎推理出错在()A大前提 B小前提C推理过程 D没有出错选A要分析一个演绎推理是否正确,主要观察所给的大前提、小前提和结论及推理形式是否都正确,若这几个方面都正确,才能得到这个演绎推理正确因为任何实数的平方都大于0,又因为a是实数,所以a20,其中大前提是:任何实数的平方都大于0,它是不正确的5在证明f(x)2x1为增函数的过程中,有下列四个命题:增函数的定义是大前提;增函数的定义是小前提;函数f(x)2x1满足增函数的定义是大前提;函数f(x)2x1满足增函数
2、的定义是小前提其中正确的命题是()A BC D选A根据三段论特点,过程应为:大前提是增函数的定义;小前提是f(x)2x1满足增函数的定义;结论是f(x)2x1为增函数,故正确6求函数y的定义域时,第一步推理中大前提是有意义时,a0,小前提是 有意义,结论是_由三段论方法知应为log2x20.答案:log2x207某一三段论推理,其前提之一为肯定判断,结论为否定判断,由此可以推断,该三段论的另一前提必为_判断根据三段论的特点,三段论的另一前提必为否定判断否定8函数y2x5的图象是一条直线,用三段论表示为:大前提:_.小前提:_.结论:_.本题忽略了大前提和小前提大前提为:一次函数的图象是一条直线
3、小前提为:函数y2x5为一次函数结论为:函数y2x5的图象是一条直线一次函数的图象是一条直线y2x5是一次函数函数y2x5的图象是一条直线9将下列演绎推理写成三段论的形式(1)菱形的对角线互相平分(2)奇数不能被2整除,75是奇数,所以75不能被2整除解:(1)平行四边形的对角线互相平分(大前提);菱形是平行四边形(小前提);菱形的对角线互相平分(结论)(2)一切奇数都不能被2整除(大前提);75是奇数(小前提);75不能被2整除(结论)10下面给出判断函数f(x)的奇偶性的解题过程:由于xR,且1.f(x)f(x),故函数f(x)为奇函数试用三段论加以分析判断奇偶性的大前提“若xR,且f(x
4、)f(x),则函数f(x)是奇函数;若xR,且f(x)f(x),则函数f(x)是偶函数”在解题过程中往往不用写出来,上述证明过程就省略了大前提解答过程就是验证小前提成立,即所给的具体函数f(x)满足f(x)f(x)层级二应试能力达标1论语学路篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足”上述推理用的是()A类比推理 B归纳推理C演绎推理 D一次三段论选C这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式2有这样一段演绎推理:“有些有理数是真分数,整数是有理数,
5、则整数是真分数”结论显然是错误的,这是因为()A大前提错误 B小前提错误C推理形式错误 D非以上错误选C用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则3如图,设平面EF,AB,CD,垂足分别是点B,D,如果增加一个条件,就能推出BDEF,这个条件不可能是下面四个选项中的()AACBACEFCAC与BD在内的射影在同一条直线上DAC与,所成的角相等选D只要能推出EFAC即可说明BDEF.当AC与,所成的角相等时,推不出EFAC,故选D.4f(x)是定义在(0,)上的非负可导函数,且满足xf(x)f(x)0.对任意正数a,b,
6、若ab,则必有()Abf(a)af(b) Baf(b)bf(a)Caf(a)f(b) Dbf(b)f(a)选B构造函数F(x)xf(x),则F(x)xf(x)f(x)由题设条件知F(x)xf(x)在(0,)上单调递减若ab,则F(a)F(b),即af(a)bf(b)又f(x)是定义在(0,)上的非负可导函数,所以bf(a)af(a)bf(b)af(b)故选B.5已知函数f(x)a,若f(x)为奇函数,则a_.因为奇函数f(x)在x0处有定义且f(0)0(大前提),而奇函数f(x)a的定义域为R(小前提),所以f(0)a0(结论)解得a.6已知f(1,1)1,f(m,n)N*(m,nN*),且对
7、任意m,nN*都有:f(m,n1)f(m,n)2;f(m1,1)2f(m,1)给出以下三个结论:(1)f(1,5)9;(2)f(5,1)16;(3)f(5,6)26.其中正确结论为_由条件可知,因为f(m,n1)f(m,n)2,且f(1,1)1,所以f(1,5)f(1,4)2f(1,3)4f(1,2)6f(1,1)89.又因为f(m1,1)2f(m,1),所以f(5,1)2f(4,1)22f(3,1)23f(2,1)24f(1,1)16,所以f(5,6)f(5,1)1024f(1,1)1026.故(1)(2)(3)均正确(1)(2)(3)7已知yf(x)在(0,)上有意义、单调递增且满足f(2
8、)1,f(xy)f(x)f(y)(1)求证:f(x2)2f(x);(2)求f(1)的值;(3)若f(x)f(x3)2,求x的取值范围(1)证明:f(xy)f(x)f(y),(大前提)f(x2)f(xx)f(x)f(x)2f(x)(结论)(2)f(1)f(12)2f(1),(小前提)f(1)0.(结论)(3)f(x)f(x3)f(x(x3)22f(2)f(4),(小前提)函数f(x)在(0,)上单调递增,(大前提)解得0x1.(结论)8已知a,b,m均为正实数,ba,用三段论形式证明证明:因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提)ba,m0,(小前提)所以mbma.(结论)因
9、为不等式两边同加上一个数,不等号不改变方向,(大前提)mbma,(小前提)所以mbabmaab,即b(am)a(bm)(结论)因为不等式两边同除以一个正数,不等号不改变方向,(大前提)b(am)a(bm),a(am)0,(小前提)所以,即.(结论)2019-2020年高中数学课时跟踪检测十四空间向量的数量积运算新人教A版选修1已知向量a,b是平面内两个不相等的非零向量,非零向量c在直线l上,则ca0,且cb0是l的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件选B若l平面,则ca,ca0,cb,cb0;反之,若ab,则ca,cb,并不能保证l平面.2已知e1,e2是夹
10、角为60的两个单位向量,则ae1e2与be12e2的夹角是()A60 B120C30 D90选Bab(e1e2)(e12e2)ee1e22e1112,|a|b|cosa,ba,b1203.如图,已知空间四边形每条边和对角线长都等于a,E,F,G分别是AB,AD,DC的中点,则下列向量的数量积等于a2的是()A2B2C2D2选C2a2,故A错;2a2,故B错;a2,故D错,只有C正确4已知四边形ABCD为矩形,PA平面ABCD,连接AC,BD,PB,PC,PD,则下列各组向量中,数量积不为零的是()A与 B与C与 D与选A用排除法,因为PA平面ABCD,所以PACD,故0,排除D;因为ADAB,PAAD,又PAABA,所以AD平面PAB,所以ADPB,故0,排除B,同理0,排除C.5在正方体ABCDA1B1C1D1中,有下列命题:()232;()0;与的夹角为60;正方体的体积为|.其中正确命题的个数是()A1 B2C3 D4选B如图所示,()2()2232;()0;与的夹角是与夹角的补角,而与的夹角为60,故与的夹角为120正方体的体积为|.综上可知,正确6已知|a|13,|b|19,|ab|24,则|ab|_.|ab|2a22abb21322ab192242,2ab46,|ab|2a22abb253046484,故|ab|
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1