ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:56.50KB ,
资源ID:13713818      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13713818.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(概率论与数理统计上机实验报告Word格式.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

概率论与数理统计上机实验报告Word格式.docx

1、Fx=unifcdf(0.4, -1,1)Fx=unifcdf(0.6, -1,1)Fx=unifcdf(0.8, -1,1)Fx=unifcdf(1.0, -1,1)Fx=unifcdf(1.2, -1,1)结果Fx =0.5000Fx =0.6000Fx =0.7000Fx =0.8000Fx =0.9000Fx =12. 产生随机数程序:X=unifrnd(-1,1,3,6)结果:X = 0.6294 0.8268 -0.4430 0.9298 0.9143 -0.7162 0.8116 0.2647 0.0938 -0.6848 -0.0292 -0.1565 -0.7460 -0.8

2、049 0.9150 0.9412 0.6006 0.83153. 求xx=unifinv(0.45, -1,1)x =-0.10004. 画图x=-1:0.1:1;px=unifpdf(x, -1,1);fx=unifcdf(x, -1,1); plot(x,px,+b);hold on;plot(x,fx,*rlegend(均匀分布函数,均匀分布密度【小结】运用基本的MATLAB指令可以方便的解决概率论中的相关问题,使数学问题得到简化。实验二掌握正态分布的有关计算掌握正态分布在实际问题处理中的应用掌握数据分析的一些方法和 MATLAB 软件在概率计算中的应用掌握综合使用 MATLAB 的命

3、令解决实际问题的方法2 、公共汽车车门的高度是按成年男子与车门碰头的机会在 0.01 以下的标准来设计的,根据统计资料成年男子的身高 X 服从均值 168cm ,标准差 7cm 的正态分布,那么车门的高度应该至少设计为多少厘米?利用成年男子的身高 X 服从均值 168cm ,标准差 7cm 的正态分布这一条件,用相关函数反解出自变量的值即为所求车门高度。x=norminv(0.99, 168,7)x =184.2844,所以车门高度应设计为184.3cm,可使得成年男子与车门碰头的机会在 0.01 以下。生活中的许多问题本身是概率论与数理统计问题或者可以抽象成概率论与数理统计问题,要善于利用学

4、过的理论知识解决生活中的实际问题。实验三掌握单个总体的矩估计法、极大似然估计法、区间估计法会用 MATLAB 对单个总体参数进行估计掌握两个正态总体均值差、方差比的区间估计方法会用 MATLAB 求两个正态总体均值差、方差比的区间估计参数估计理论知识两个正态总体的区间估计理论知识MATLAB 软件2 、 为比较甲乙两种型号子弹的枪口速度,随机抽取甲种型号子弹 10 发,得枪口速度平均值 500(m / s) ,标准差1.10(m / s) ,随机抽取乙种型号子弹 20 发,得枪口速度平均值496(m / s) ,标准差1.20(m / s) ,根据生产过程可假定两总体都近似服从正态分布,且方差

5、相等。求两总体均值差的置信水平为 0.95 的置信区间。利用软件求出t分布的函数值在将其带入求解上下界的公式中即可得到置信水平为 0.95 的置信区间。x=500-496;y=(9*1.12+19*1.22)/28)0.5;z=tinv(0.025, 28);a=x+z*(1/10+1/20)0.5*yb=x-z*(1/10+1/20)0.5*ya =3.0727b =4.9273所以得到:总体均值差的置信水平为 0.95 的置信区间为(3.0727,4.9273)利用软件求解特殊函数,大大减少的运算量,方便得到所需要的结果。P101-11exp=;price=-200 100;exp(1)=

6、expcdf(1,4)exp(2)=1-exp(1)Ey=exp*priceexp = 0.2212 0.2212 0.7788Ey = 33.6402即平均获利为Ey=e(-1/4)*300-200=33.6402p101-13Syms x yfxy=(x+y)/3;Ex=int(int(fxy*x,y,0,1),x,0,2)Ey=int(int(fxy*y,y,0,1),x,0,2)Exy=int(int(fxy*x*y,y,0,1),x,0,2)E=int(int(fxy*(x2+y2),y,0,1),x,0,2)Ex =11/95/9Exy =2/3 E =13/6P102-22fxy

7、=1;Ex=int(int(fxy*x,y,-x,x),x,0,1)Ey=int(int(fxy*y,y,-x,x),x,0,1)Ex2=int(int(fxy*x2,y,-x,x),x,0,1)Ey2=int(int(fxy*y2,y,-x,x),x,0,1)Dx=Ex2-Ex2Dy=Ey2-Ey22/3Ex2 =1/2 Ey2 =1/6Dx =1/18Dy =P103-26fxy=2-x-y;Ex=int(int(fxy*x,y,0,1),x,0,1);Ey=int(int(fxy*y,y,0,1),x,0,1);Ex2=int(int(fxy*x2,y,0,1),x,0,1);Ey2=i

8、nt(int(fxy*y2,y,0,1),x,0,1);Dx=Ex2-Ex2;Dy=Ey2-Ey2;Exy=int(int(fxy*x*y,y,0,1),x,0,1);Covxy=Exy-Ex*Eyrxy=Covxy/(sqrt(Dx)*sqrt(Dy)D=4*Dx+Dycov(x*y) =-1/144rxy =-1/11D =55/144实验四会用 MATLAB 软件进行单个总体均值、方差的假设检验会用 MATLAB 软件进行两个总体均值差、方差比的假设检验掌握使用 MATLAB 进行假设检验的基本命令和操作2 、 假设某炼铁厂铁水中含碳量 ( , 0.112 )X N : ,现对工艺进行了

9、改进,从中抽取了 7炉铁水,测得含碳量数据:4.421,4.052 ,4.357,4.394,4.326 ,4.287 ,4.683 ,试问新工艺炼出的铁水含碳量的方差是否有明显的改变?(取 = 0.05 )利用软件求出f分布的函数值在将其带入求解上下界的公式中即可得到拒绝域,然后比较实验值与拒绝域的范围,即可判定新工艺炼出的铁水含碳量的方差是否有明显的改变。n=7;m=7;f1=0.05;f2=1-0.05;x=4.421,4.052,4.357,4.394,4.326,4.287,4.683;D=var(x,1)a=finv(f1,n-1,m-1)b=finv(f2,n-1,m-1)c=0

10、.1122/Da =0.2334b =4.2839c =0.4170所以可得:拒绝与的区间为(-,0.2334)或(4.2839,+),c =0.4170 不在拒绝域的范围内,可以认为新工艺炼出的铁水含碳量的方差有明显的改变。可以利用概率统计的知识辅助判断工业生产中的问题,得到有使用价值的结论。P175-27x1=0.143 0.142 0.143 0.137x2=0.140 0.142 0.136 0.138 0.140x=mean(x1)y=mean(x2)s1=var(x1)s2=var(x2)s=sqrt(3*s1+4*s2)/7)t=tinv(0.975,7)d1=(x-y)-t*s

11、*sqrt(1/4+1/5)d2=(x-y)+t*s*sqrt(1/4+1/5)结果:s = 0.0026t = 2.3646d1 = -0.0020d2 =0.0061即置信区间为(-0.0020,0.0061)P175-28u=norminv(0.975,0,1)s=sqrt(0.0352/100+0.0382/100)d1=(1.71-1.67)-u*sd2=(1.71-1.67)+u*su = 1.9600 0.0052 0.0299 0.0501即置信区间为(0.0299,0.0501)P175-30f1=finv(0.975,9,9)f2=finv(0.025,9,9)f3=fin

12、v(0.95,9,9)f4=finv(0.05,9,9)s12=0.5419s22=0.6065d1=s12/s22/f1d2=s12/s22/f2d3=s12/s22/f3d4=s12/s22/f4 0.2219 3.5972d3 = 0.2811d4 = 2.8403即置信区间为(0.2219,3.5972),置信下界为0.2811,置信上界为2.8403五、实验五 假设检验1 会用MATLAB进行单个正态总体均值及方差的假设检验2 会用MATLAB进行两个正态总体均值差及方差比的假设检验熟悉MATLAB进行假设检验的基本命令与操作P198-2原假设H0:平均尺寸mu=32.25;H1:平均尺寸mu32.25方差已知,用ztestx=32.56,29.66,31.64,30.00,31.87,31.03h,sig,ci,zval=ztest(x,32.25,1.1,0.05)

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1