ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:331.16KB ,
资源ID:13601001      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13601001.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(信息论课程报告信息论在分割数字图像中的应用Word文件下载.docx)为本站会员(b****0)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

信息论课程报告信息论在分割数字图像中的应用Word文件下载.docx

1、分析结果表明,二维熵阈值分割模型下的“噪声”与实际噪声并吻合的并不好,难以直接使用。这主要是模型的自身缺陷所致。关键词:一维熵;二维熵;图像处理;阈值分割第一章引言信息论是应用数学、电机工程学和计算机科学的一个分支,涉及信息的量化。信息论是由克劳德香农发展,用来找出信号处理操作的基本限制,如数据压缩、可靠的存储和数据传输的。自创立以来,它已拓展应用到许多其他领域,包括统计推断、自然语言处理、密码学、神经生物学1、进化论2和分子编码的功能3、生态学的模式选择4、热物理5、量子计算、语言学、剽窃检测6、模式识别、异常检测和其他形式的数据分析7。阈值分割是图像处理和计算机视觉中的基本和关键技术之一,

2、因简单有效而成为使用最为普遍的分割方法8。其关键是如何选取阈值以获得最佳分割效果。在较早提出并进行定性和定量比较研究的有代表性的阈值选取方法中9-10,由Kapur等人11提出的最大Shannon熵法因对不同信噪比和不同大小的目标均能产生较好的分割效果且简单有效,而成为实际中常被选用的方法。这种一维最大熵法虽然处理速度快,但因一维灰度直方图不能反映图像的局部空间信息,当图像受到噪声干扰等因素影响时,难以获得满意的分割效果8。因此,Abutaleb11与Brink12分别将最大Shannon熵法拓展到灰度级一邻域平均灰度级二维直方图,其效果较一维方法有所改善。吴一全等人8指出二维直方图区域直分法

3、中存在明显的错分。本文采用的数据是图像lena。并加以分析。第二章图像熵的计算2.1图像一维熵的计算任何一个消息的自信息量都代表不了信源所包含的平均自信息量。不能作为整个信源的信息测度,因此定义自信息量的数学期望为离散信源的平均自信息量:称之为信源的信息熵。H是从整个信源的统计特性来考虑的,它是从平均意义上来表征信源的总体特性的。对于某特定的信源,其信息熵只有一个;不同的信源因统计特性不同,其熵也不同。图像熵反映了图像中平均每个像元含有信息量的多少。一维熵将像元看作相互独立,表示图像中灰度分布的聚集特征。令Pi 表示图像中灰度值为i的像素所占的比例,计算图像的一元灰度熵为:在MATLAB中输入

4、图像,统计出图像中不同灰度出现的次数,并计算其概率,这样就可以求出图像的一维熵,结果为7.4334bits。2.2图像二维熵的计算图像的一维熵可以表示图像灰度分布的聚集特征,却不能反映图像灰度分布的空间特征,为了表征这种空间特征,可以在一维熵的基础上引入能够反映灰度分布空间特征的特征量来组成图像的二维熵。选择图像的邻域灰度均值作为灰度分布的空间特征量,与图像的像素灰度组成特征二元组,记为( i, j ),其中i表示像素的灰度值,j 表示邻域灰度,f(i, j)为特征二元组(i, j)出现的频数。计算联合概率其中MN等于图像的总像元数。定义离散的图像二维熵为:构造的图像二维熵可以在图像所包含信息

5、量的前提下,突出反映图像中像素位置的灰度信息和像素邻域内灰度分布的综合特征(原图像与均值平滑后的图像的联合熵,再除以1/2)。在MATLAB中输入图像,将其转为double型的矩阵,对图像进33行均值滤波(其中图像的边缘像素由于邻近的像元少于8个,MATLAB的滤波函数并未进行操作,下边的代码对应的是计算图像中间510*510的像素的二维熵),将图像原始值乘以1000再加上均值滤波后的数值(不可颠倒顺序),这样仅通过统计新生成的数是否一致即可求出频数,求出图像的二维熵,结果为:7.155bits(如果认为均值滤波后的图像的像元也只能取整数的话,则图像的二维熵为:5.6677bits;如果认为均

6、值滤波后的图像保留图像边缘(不对边缘做任何处理)的话,图像的二维熵为:7.2234bits;如果认为均值滤波后的图像的像元也只能取整数且保留图像边缘的话,图像的二维熵为:5.7311bits)第三章最大熵阈值分割3.1 一维熵最大熵阈值分割一维熵是将像元看作相互独立,反应了图像中灰度分布的聚集特征所包含的信息量。令Pi 表示图像中灰度值为i的像素所占的比例,计算图像的一维灰度熵:设分割的灰度阈值为t,0,t为背景,t+1,255为目标。使目标和背景的熵和最大者为最佳阈值。在MATLAB中输入图像,统计出图像中不同灰度(图像的灰度是0,255的一个子集),并根据已有的灰度值循环找到一个分割阈值使

7、背景熵与目标熵的和最大。其结果为:分割阈值灰度为:122;目标和背景的一维熵的和为:12.8996bits。a一维熵阈值分割的结果 b图像的一维直方图(橙黄色的线为阈值)图13.2二维熵最大熵阈值分割二维熵阈值分割的阈值对(s,t)定义在图像二维直方图上,也就是一个LxL大小的正方形区域,L表示图像的灰度级(比如256),正方形区域的横坐标表示图像像元的灰度值,纵坐标表示像元的邻域的平均灰度值,该正方形区域中的任一点(i,j)的值pij表示(i,j)发生的频率。 图2 二维直方图x0y平面图求出的二维分割阈值(s,t)是上述正方形区域中的一点,可以将此二维直方图划分为4块,对图像的分割也可以划

8、分为如下四种,对于任意的(i,j)有:(1) 0is,且0 jt, A区域表示背景;(2)sL-1,且tjL-1, B区域表示目标;(3) 0s,且tL-1, D区域表示噪声;(4) sL-1,且0t, C的区域表示边缘;在MATLAB中输入图像,对其进行33均值滤波,统计出图像中不同灰度,并根据已有的灰度值循环找到一个分割阈值使背景熵与目标熵的和最大。结合一维熵阈值分割运行结果,可得分割阈值灰度为:(122,121.6667)。a二维熵阈值分割的结果 b图像的二维直方图x0y平面图(十字为阈值)图33.3 添加噪声后的二维熵阈值分割如图2所示,区域D代表噪声,区域C代表边缘。但是区域D反映的

9、是原始灰度低邻域灰度高的地方,区域C反映的是原始灰度高邻域灰度低的地方。事实上噪声像元和邻域的像元一般有较大的差别,但未必都是原始灰度低邻域灰度高的地方,同样边缘像素也未必是原始灰度高邻域灰度低。所以这个模型可能存在着较大的问题。为了简单起见,给图像添加了5%的椒盐噪声(实际的噪声要比这个复杂),将噪声的分为噪声(亮噪声、暗噪声的和)、亮噪声、暗噪声,将加噪声的图像按照二维熵阈值分割模型分割,提取模型下的噪声和和边缘将它们和上面三种噪声对比,计算混淆矩阵、分类精度与Kappa系数等,评价模型分类精度。(a)一维熵阈值分割下的目标(白色)和背景(黑色)(b)二维熵阈值分割的结果,浅灰色表示噪声深

10、灰色为边缘(c)二维直方图,分布在左右两端的线上的都为真实的噪声(e)白色为预测噪声分和真实的噪声不同的地方(f)白色为预测噪声分和真实的暗噪声不同的地方(g)白色为预测噪声分和真实的亮噪声不同的地方(h)白色为预测边缘分和真实的噪声不同的地方(i)白色为预测边缘分和真实暗的噪声不同的地方(j)白色为预测边缘分和真实的亮噪声不同的地方图4混淆矩阵是模式识别领域中一种可视化的分类效果示意图。它描绘了样本数据的真实类别属性与识别结果之间的关系,是评价分类器性能的一种常用方法假设对于 k 类模式的分类任务,训练样本集D包括N个样本,每个类别分别含有 Ni 个数据( i = 1,k) 采用某种识别算法

11、构造分类器C,cmij表示i类模式被分类器C判断成j类模式的数据占i类模式样本总数的百分率,则可得到 k k 维混淆矩阵CM(C,D)13 :混淆矩阵中元素的行下标对应目标的真实类别,列下标对应分类器产生的估计类别。对角线元素表示各模式能够被分类器C正确分类的百分率,而非对角线元素则表示发生错误分类的百分率13。在做数据分析时,我们经常会面临一致性检验问题,即判断不同的模型或者分析方法在预测结果上是否具有一致性、模型的结果与实际结果是否具有一致性等。Kappa的计算最早由Cohen提出,计算方法比较简14:其中P0是观察一致性(observed agreement),而Pe是期望一致性 (ag

12、reement by chance),指的是在测量者为独立之假设下一致性的期望,通常被视为测量看法一致性的基准。=1表示两测量结果完全一致;=0表示不存在一致性14;0表示观察一致率小于期望一致率。表1a-1 真实的噪声与预测噪声混淆矩阵类型非噪声(真实)噪声(真实)总量非噪声(模型)22244920510242959噪声(模型)1350456811918523595326191262144a-2 真实的噪声与预测噪声分类精度漏分(%)错分(%)制图精度(%)用户精度(%)5.7231736838.44175354794.2768263291.5582464578.309342970.3883242127.6986835729.61167579a总分类精度为:0.870246887;Kappa 系数为:0.181222571b-1 真实的亮噪声与预测噪声混淆矩阵非亮噪声(真实)亮噪声(真实)22995313006249138b-2 真实的亮噪声与预测噪声分类精度7.70055155.353166692.29944894.646833100b总分类精度为:0.87720108;-0.062854284c-1 真实的暗噪声与预测噪声混淆矩阵非暗噪声(真实)暗噪声(真实)23545575042489591318526214

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1