ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:220.90KB ,
资源ID:13592517      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13592517.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学建模传染病模型Word下载.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

数学建模传染病模型Word下载.docx

1、二、问题分析1、这是一个涉及传染病传播情况的实际问题,其中涉及传染病感染人数随时间的变化情况及一些初始资料,可通过建立相应的微分方程模型加以解决。2、问题表述中已给出了各子问题的一些相应的假设。3、在实际中,感染人数是离散变量,不具有连续可微性,不利于建立微分方程模型。但由于短时间内改变的是少数人口,这种变化与整体人口相比是微小的。 因此,为了利用数学工具建立微分方程模型,我们还需要一个基本假设:感染人数是时间的连续可微函数。三、模型假设模型二和模型三的假设条件:假设一:在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。人群分为易感染者(Susceptible)和已感染者(I

2、nfective)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。假设二:每个病人每天有效接触的平均人数是常数,称为日接触率。当病人与健康者接触时,使健康者受感染变为病人。假设三:模型三在假设一和假设二的基础上进行考虑,然后设病人每天治愈的比例为,称为日治愈率。病人治愈后成为仍可被感染的健康者,显然1/是这种传染病的平均传染期。模型四的假设条件:假设四:总人数N不变。人群分为健康者、病人和病愈免疫的移出者(Removed)三类,称SIR模型。三类人在总数N中占的比例分别记作s(t),i(t)和r(t)。假设五:病人

3、的日接触率为,日治愈率为(与SI模型相同),传染期接触为 =/。四、符号说明t 某一具体时刻x(t)病人人数每天每个病人有效接触的人数N总人数s(t)健康者总人数i(t)病人总人数i初始时刻病人的比例t病人的最大值日治愈率1/平均传染率接触率r(t)移出者s初始时刻健康者的比例五、模型的建立与求解模型1 在这个最简单的模型中,设时刻t的病人人数x(t)是连续、可微函数,并且每天每个病人有效接触(足以使人致病的接触)的人数为常数,考察t到病人人数的增加,就有方程(1)的解为 结果表明,随着t的增加,病人人数x(t)无限增长,这显然是不符合实际的。建模失败的原因在于:在病人有效接触的人群中,有健康

4、人也有病人,而其中只有健康人才可以被传染为病人,所以在改进的模型中必须区别这两种人。模型2(SI模型) 又因为 方程(5)是Logistic模型。它的解为 这时病人增加的最快,可以认为是医院的门诊量最大的一天,预示着传染病高潮的到来,是医疗卫生部门关注的时刻。 其原因是模型中没有考虑到病人可以治愈,人群中的健康者只能变成病人,病人不会再变成健康者。模型3(SIS模型) 有些传染病如伤风、痢疾等愈合后免疫力很低,可以假定无免疫性,于是病人被治愈后变成健康者,健康者还可以被感染再变成病人,所以这个模型成为SIS模型。考虑到这一模型的假设条件,于是有 (8)可得微分方程 0 (9)定义 (10)其中

5、是整个传染期内每个病人有效接触的平均人数,称为接触数。得到 (11)模型4(SIR模型)大多数传染者如天花 流感 肝炎 麻疹等治愈后均有很强的免疫力,所以病愈的人既非健康者(易感染者),也非病人(已感染者),因此他们将被移除传染系统,我们称之为移除者,记为R类。SIR模型是指易感染者被传染后变为感染住,感病者可以被治愈,并会产生免疫力,变为移除者。人员流动图为:S-I-R。1.模型构成:在假设1中显然有: s(t) + i(t) + r(t) = 1 (12)对于病愈免疫的移出者的数量应为 (13)不妨设初始时刻的易感染者、染病者、恢复者的比例分别为(0),(0),=0,则SIR基础模型用微分

6、方程组表示如下: (14)s(t) , i(t)的求解极度困难,在此我们先做数值计算来预估计s(t) , i(t)的一般变化规律。2.数值计算在方程(3)中设=1,=0.3,i(0)= 0.02,s(0)=0.98,用MATLAB软件编程:function y=ill(t,x)a=1;b=0.3;y=a*x(1)*x(2)-b*x(1);-a*x(1)*x(2);ts=0:50;x0=0.20,0.98;t,x=ode45(ill,ts,x0);plot(t,x(:,1),t,x(:,2)pauseplot(x(:,2),x(:,1) 输出的简明计算结果列入表1。i(t) , s(t)的图形以

7、下两个图形,is图形称为相轨线,初值i(0)=0.02,s(0)=0.98相当于图2中的P0点,随着t的增,(s,i)沿轨线自右向左运动.由表1、图1、图2可以看出,i(t)由初值增长至约t=7时达到最大值,然后减少,t,i0,s(t)则单调减少,t,s0.0398. 并分析i(t),s(t)的一般变化规律.表1 i(t),s(t)的数值计算结果t 0 1 2 3 4 5 6 7 8i(t)0.02000.03900.07320.12850.20330.27950.33120.34440.3247s(t)0.98000.95250.90190.81690.69270.54380.39950.2

8、8390.2027 t 9 10 15 20 25 30 35 40 450.28630.24180.07870.02230.00610.00170.00050.00010.14930.11450.05430.04340.04080.04010.03990.039813.相轨线分析我们在数值计算和图形观察的基础上,利用相轨线讨论解i(t),s(t)的性质。 D = (s,i)| s0,i0 , s + i 1 (15)在方程(14)中消去并注意到的定义,可得 (16)所以:利用积分特性容易求出方程(5)的解为: (17)在定义域D内,(17)式表示的曲线即为相轨线,如图3所示.其中箭头表示了随

9、着时间t的增加s(t)和i(t)的变化趋向。图3下面根据(14),(17)式和图3分析s(t),i(t)和r(t)的变化情况(t时它们的极限值分别记作, 和).1.不论初始条件s0,i0如何,病人将消失,即:2.最终未被感染的健康者的比例是 ,在(7)式中令i=0得到, 是方在(0,1/)内的根.在图形上 是相轨线与s轴在(0,1/)内交点的横坐标3.若1/,则开始有,i(t)先增加, 令=0,可得当s=1/时,i(t)达到最大值:然后s1/(即1/s0)时传染病就会蔓延.而减小传染期接触数,即提高阈值1/使得1/(即 1/),传染病就不会蔓延(健康者比例的初始值是一定的,通常可认为接近1)。

10、并且,即使1/, 减小时, 增加(通过作图分析), 降低,也控制了蔓延的程度.我们注意到在=中,人们的卫生水平越高,日接触率越小;医疗水平越高,日治愈率越大,于是越小,所以提高卫生水平和医疗水平有助于控制传染病的蔓延.从另一方面看, 是传染期内一个病人传染的健康者的平均数,称为交换数,其含义是一病人被个健康者交换.所以当 即时必有 .既然交换数不超过1,病人比例i(t)绝不会增加,传染病不会蔓延。5. 群体免疫和预防:根据对SIR模型的分析,当 时传染病不会蔓延.所以为制止蔓延,除了提高卫生和医疗水平,使阈值1/变大以外,另一个途径是降低 ,这可以通过比如预防接种使群体免疫的办法做到。忽略病人比例的初始值有,于是传染病不会蔓延的条件 可以表为这就是说,只要通过群体免疫使初始时刻的移出者比例(

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1