1、 %使得数据分布范围-127127B=int16(A(:,3)-128; 通过imread函数获取BMP图像的R、G、B三原色矩阵,因为下一步做DCT转换,二DCT函数要求输入为正负值,所以减去128,使得像素点分布范围变为-127127,函数默认矩阵A的元素为无符号型(uint8),所以如果直接相减差值为负时会截取为0,所以先用int16将像素点的值转为带符号整数。网上很多都提到了第一步的YUV转换,但是由于MATLAB在实验时YUV转换后色差失真比较严重,这里没有进行YUV转换。个人理解为YUV转换后经过非R/G/B原理显示器显示效果可能会比较好,或者如果图像有色差可以选择YUV调整。为了
2、方便,读入的图像像素为400*296,是8*8的50*37倍,所以代码里没有进行8*8的整数倍调整。 2. 8*8分块 R_8_8=R(1:8,1:8);%取出一个8*8块 这里以R色压缩解码为例,后边解释均为R色编码解码过程,最后附全部代码。R_8_8为: 3.DCT变换 R_DCT=dct2(R_8_8); 使用MATLAB函数dct2进行DCT变换,也可使用DCT变换矩阵相乘的方法,即R_DCT=A* R_8_8*AT,其中A为DCT变换矩阵。R_DCT为:4.量化R_dct_s=round(R_DCT./S); 使用JPEG标准亮度量化表S量化并取整,S为:R_dct_s为:其中第一个
3、数-14为DC系数,剩余63个数为AC系数,左上角低频,右下角高频,可以看出量化后已经将多数高频量丢弃,从而实现数据压缩。5.Zig_Zag扫描Rdcts_c=reshape(R_dct_s,1,64);Rdcts_c_z=Rdcts_c(zig);利用reshape函数将量化后的矩阵转为1,64行向量,利用zig向量按位取值,进行Zig_Zag扫描。其中Rdcts_c为:1164位均为0;zig为:zig=0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49
4、,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63;Zig_Zag扫描后的向量Rdcts_c_z为:可以看出通过zig向量按位取值准确实现了对量化后DC,AC系数的Zig_Zag扫描。6.获取DC/AC系数的中间格式r_dc_diff=Rdcts_c_z(1)-r_dc;用当前DC系数减去上一个8*8子块的DC系数得到两DC系数的差值作为DC系数中间值,因为图像相邻像素具有很大的相关性,这样做可以减小DC编码长度,进一步压缩代码,在解码的时候通过该差值依次获得各8*8子块
5、DC系数。r_dc=Rdcts_c_z(1);解码之后用该代码将当前DC系数赋给r_dc作为下一次编码时求差值的参考值。for i=2:1:64;if Rdcts_c_z(i)=0&r_n15&i=64 r_n=r_n+1;elseif Rdcts_c_z(i)=0&i=64 r_ac_cnt=r_ac_cnt+1; r_AC(1,2*r_ac_cnt-1)=r_n; r_AC(1,2*r_ac_cnt)=Rdcts_c_z(i); r_n=0;elseif Rdcts_c_z(i)=0&15r_n=15end该for循环用来获取AC系数的中间格式,因为第一个数为DC系数,所以循环从2开始。因
6、为63个AC系数中有很多值为0,所以采用行程编码可以很大的减小编码长度。行程编码是指记录两个非0数之间0的个数,以及非零数的数值,非零数个数和数值为一组中间格式,这里为了计数方便,连续16个0出现时,用(15,0)表示,继续获取下一个AC系数中间格式,也就是说行程编码压缩的最大长度设为16bit,例如数列:1、0、0、-1、0、0、0、0、0、3、0、0、0、0、0、0、0、0、0、0、0、0、0、0、0、0、0、0、0、0、0、2;对该列数通过形成编码获取中间格式即为:(0,1)、(2,-1)、(5,3)、(15,0)、(5,2)。第一个数为0的个数,第二个数为数值,特殊情况(15,0)指1
7、6个0。通过该for循环获取AC系数中间格式并保存在向量Rdcts_c_z中,奇数表示0的个数,偶数表示AC系数数值。表示前两个数是1,后边共有16*3+13=61个0,与量化表相同。7. Huffman熵编码熵编码可以根据Huffman算法对每个量化后的矩阵进行现场编码,但是这样会增加传输数据(需要传输编码表),所以这里采用标准HuffmanVLI编码表进行编码,VLI编码表如下:数值位数编码-1,110,1-3,-2,2,3200,01,10,11-7,-6,-5,-4,4,5,6,73000,001,010,101,110,111-15,-8,8,1540000,0001,1110,11
8、11-31,-16,16,31500000,00001,11110,11111-63,-32,32,636-127,-64,64,1277-255,-128,128,2558-511,-256,256,5119-1023,-512,512,102310-2047,-1024,1024,204711121314熵编码后所得编码即为压缩后的代码,方便存储或者传输。为了便于硬件实现,这里没有涉及到Huffman亮度表,而是依据VLI编码表,通过DC/AC系数的数值确定位数和编码(编码原理),熵编码由上表中的位数和编码两部分组成,即压缩后的编码包括两部分,然后再依据VLI编码表,通过位数和编码返回DC
9、/AC系数(解码原理),编码中还包含了AC系数中0的个数。0的个数和位数均用4bit二进制数表示。r_huff=cell(r_ac_cnt+1,3);%建立三列矩阵保存压缩后的编码,第一例为0的个数,第二列为编码长度,第三例为编码 for j=0:r_ac_cnt;if j=0 siz,code=vli(r_dc_diff); %通过vli编码函数对DC差值进行编码,获得DC差值编码长度和编码,vli函数见附录。 %siz,code=vli(r_dc);%通过vli函数获取AC系数编码及编码长度 r_huff(1,1)=cellstr(dec2bin(0); %cellstr将二进制字符串转为
10、cell格式放入矩阵 r_huff(1,2)=cellstr(dec2bin(siz,4);%将哈夫曼编码长度存为4bit r_huff(1,3)=cellstr(dec2bin(code,siz);%将哈夫曼编码转为二进制 r_code_bit=r_code_bit+siz; %计算编码长度else if r_AC(2*j)=0 r_huff(j+1,1)=cellstr(dec2bin(r_AC(2*j-1),4);%将0的个数写入第一列 r_huff(j+1,2)=cellstr(dec2bin(0); r_huff(j+1,3)=cellstr(dec2bin(0); else siz
11、,code=vli(r_AC(2*j); r_huff(j+1,2)=cellstr(dec2bin(siz,4); %AC编码长度写入第二列 r_huff(j+1,3)=cellstr(dec2bin(code,siz); %AC编码写入第三列 end压缩后的编码表r_huff如下:此时已将8*8*8=512bit压缩为4+6*8+2+1+1=56bit。8.DC/AC系数Huffman熵解码i_n=1;for k=1:r_ac_cnt+1; if k=1 i_value=i_vli(r_huff(1,2),r_huff(1,3) %i_vli函数解码,i_vli通过编码长度和编码恢复DC/
12、AC系数真值,函数见附录。 i_Rdcts_c_z(1,i_n)=r_dc+i_value; %i_Rdcts_c_z(1,i_n)=r_huff(1,3); i_n=i_n+1; r_dc=Rdcts_c_z(1); else if bin2dec(r_huff(k,1)=15&bin2dec(r_huff(k,2)=0 i_Rdcts_c_z(1,i_n:i_n+15)=0;%出现中间格式(15,0)返16个0 i_n=i_n+16; elseif bin2dec(r_huff(k,1)=0& i_Rdcts_c_z(1,i_n)=0; %出现中间格式(0,0)反1个0,没有具体分析这种情况到底是否存在,但是如果最后一位恰好为0,此时恰好开始新的中间格式计算,i=64时终止计算,则中间格式为(0,0)else i_n+bin2dec(r_huff(k,1)-1)
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1