1、,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标解:1、A(8,0) B(0,6)2、当0t3时,S=t2 当3t8时,S=38(8-t)t提示:第(2)问按点P到拐点B所有时间分段分类;第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-OP为边、OQ为边, OP为边、OQ为对角线,OP为对角线、OQ为边。然后画出各类的图形,根据图形性质求顶点坐标。2、(2009年衡阳市)如图,AB是O的直径,弦BC=2cm,ABC=60(1)求O的直径;(2)若D是AB延长线上一点,连结CD,当BD长为多少时
2、,CD与O相切;(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为,连结EF,当为何值时,BEF为直角三角形注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线经过点,抛物线的顶点为,过作射线过顶点平行于轴的直线交射线于点,在轴正半轴上,连结(1)求该抛物线的解析式;(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一
3、个点停止运动时另一个点也随之停止运动设它们的运动的时间为,连接,当的面积最小?并求出最小值及此时的长发现并充分运用特殊角DAB=60 当OPQ面积最大时,四边形BCPQ的面积最小。二、特殊四边形边上动点4、(2009年吉林省)如图所示,菱形的边长为6厘米,从初始时刻开始,点、点出发,点以1厘米/秒的速度沿的方向运动,点以2厘米/秒的速度沿的方向运动,当点运动到点时,两点同时停止运动,设秒时,重叠部分的面积为平方厘米(这里规定:点和线段是面积为的三角形),解答下列问题: (1)点从出发到相遇所用时间是 秒;(2)点从开始运动到停止的过程中,当是等边三角形时的值是 秒;(3)求之间的函数关系式第(
4、3)问按点Q到拐点时间B、C所有时间分段分类 ; 提醒- 高相等的两个三角形面积比等于底边的比 。5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位秒的速度向终点C匀速运动,设PMB的面积为S(),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当 t为何值时,MPB与BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值
5、第(2)问按点P到拐点B所用时间分段分类; 第(3)问发现MBC=90,BCO与ABM互余,画出点P运动过程中, MPB=ABM的两种情况,求出t值。 利用OBAC,再求OP与AC夹角正切值.6、(2009年温州)如图,在平面直角坐标系中,点A(,0),B(3,2),C(0,2)动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动过点E作EF上AB,交BC于点F,连结DA、DF设运动时间为t秒(1)求ABC的度数;(2)当t为何值时,ABDF;(3)设四边形AEFD的面积为S求S关于t的函数关系式;若一抛物线y=x2+mx经过动点E
6、,当S2时,求m的取值范围(写出答案即可)发现特殊性,DEOA7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且AOC=60,点B的坐标是,点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1a3)个单位长度的速度沿射线OA方向移动,设秒后,直线PQ交OB于点D.(1)求AOB的度数及线段OA的长;(2)求经过A,B,C三点的抛物线的解析式;时,求t的值及此时直线PQ的解析式;(4)当a为何值时,以O,P,Q,D为顶点的三角形与相似?当a 为何值时,以O,P,Q,D为顶点的三角形与不相似?请给出你的结论,并加以证明.8、(08黄冈
7、)已知:如图,在直角梯形中,以为原点建立平面直角坐标系,三点的坐标分别为,点为线段的中点,动点出发,以每秒1个单位的速度,沿折线的路线移动,移动的时间为秒(1)求直线的解析式;在线段上移动,当的面积是梯形面积的?(3)动点出发,沿折线的路线移动过程中,设,请直接写出的函数关系式,并指出自变量的取值范围;(4)当动点上移动时,能否在线段上找到一点,使四边形为矩形?请求出此时动点的坐标;若不能,请说明理由9、(09年黄冈市)如图,在平面直角坐标系xoy中,抛物线与x轴的交点为点A,与y轴的交点为点B. 过点B作x轴的平行线BC,交抛物线于点C,连结AC现有两动点P,Q分别从O,C两点同时出发,点P
8、以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DEOA,交CA于点E,射线QE交x轴于点F设动点P,Q移动的时间为t(单位:秒)(1)求A,B,C三点的坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当0t时,PQF的面积是否总为定值?若是,求出此定值, 若不是,请说明理由;(4)当t为何值时,PQF为等腰三角形?请写出解答过程第(3)问用相似比的代换,得PF=OA(定值)。 第(4)问按哪两边相等分类讨论PQ=PF, PQ=FQ, QF=P
9、F.三、直线上动点8、(2009年湖南长沙)如图,二次函数()的图象与轴交于两点,与轴相交于点连结两点的坐标分别为,且当时二次函数的函数值相等(1)求实数的值;(2)若点点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动当运动时间为秒时,连结,将沿翻折, 点恰好落在边上的处,求的值及点(3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以为项点的三角形与如果存在,请求出点如果不存在,请说明理由第(2)问发现特殊角CAB=30,CBA=60特殊图形四边形BNPM为菱形; 第(3)问注意到ABC为直角三角形后,按直角位置对应分类;先画出与ABC相似
10、的BNQ ,再判断是否在对称轴上。9、(2009眉山)如图,已知直线轴交于点A,与轴交于点D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0)。求该抛物线的解析式;动点P在x轴上移动,当PAE是直角三角形时,求点P的坐标P。在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标。第(2)问按直角位置分类讨论后画出图形-P为直角顶点AE为斜边时,以AE为直径画圆与x轴交点即为所求点P, A为直角顶点时,过点A作AE垂线交x轴于点P, E为直角顶点时,作法同;第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。10、(2009年兰州)如图,正方形 ABCD中,点
11、A、B的坐标分别为(0,10),(8,4), 点C在第一象限动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;第(4)问按点P分别在AB、BC
12、、CD边上分类讨论;求t值时,灵活运用等腰三角形“三线合一”。11、(2009年北京市)如图,在平面直角坐标系中,ABC三个顶点的坐标分别为,延长AC到点D,使CD=,过点D作DEAB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明)第()问,平分周长时,直线过菱形的中心;第()问,转化为点到的距离加到()中直线的距离和最小;发现()中直线与轴夹角为.见“最短路线问题”专题。12、(2009年上海市)已知ABC=90,AB=2,BC=3,ADBC,P为线段BD上的动点,点Q在射线AB上,且满足(如图1所示)(1)当AD=2,且点与点重合时(如图2所示),求线段的长;(2)在图8中,联结当,且点上时,设点之间的距离为,其中表示APQ的面积,表示的面积,求关于的函数解析式,并写出
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1