ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:603.48KB ,
资源ID:13216299      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13216299.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(考研数学三真题与答案详细讲解文档格式.docx)为本站会员(b****0)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

考研数学三真题与答案详细讲解文档格式.docx

1、(C)【解析】根据拐点的必要条件,拐点可能是不存在的点或的点处产生.所以有三个点可能是拐点,根据拐点的定义,即凹凸性改变的点;二阶导函数符号发生改变的点即为拐点.所以从图可知,拐点个数为2,故选C.(3) 设 ,函数在上连续,则 ( )(A) (B) (C) (D) (B)【解析】根据图可得,在极坐标系下该二重积分要分成两个积分区域所以,故选B.(4) 下列级数中发散的是( )(A) (B) (C) (D) 【解析】A为正项级数,因为,所以根据正项级数的比值判别法收敛;B为正项级数,因为,根据级数收敛准则,知收敛;C,根据莱布尼茨判别法知收敛, 发散,所以根据级数收敛定义知,发散;D为正项级数

2、,因为,所以根据正项级数的比值判别法收敛,所以选C.(5)设矩阵,.若集合,则线性方程组有无穷多解的充分必要条件为 ( )【解析】,由,故或,同时或.故选(D)(6) 设二次型在正交变换下的标准形为,其中,若则在正交变换下的标准形为( )(A) (B) (A)【解析】由,故.且.又因为故有所以.选(A)(7) 若为任意两个随机事件,则: ( ) (A) (B) 【解析】由于,按概率的基本性质,我们有且,从而,选(C) .(8) 设总体为来自该总体的简单随机样本, 为样本均值,则 ( )(A) (B) (C) (D)【解析】根据样本方差的性质,而,从而,选(B) .二、填空题:914小题,每小题

3、4分,共24分.请将答案写在答题纸指定位置上.(9) 【解析】原极限(10)设函数连续,若则【解析】因为连续,所以可导,所以;因为,所以又因为,所以故(11)若函数由方程确定,则【解析】当,时带入,得.对求微分,得把,代入上式,得所以(12)设函数是微分方程的解,且在处取得极值3,则【解析】的特征方程为,特征根为,所以该齐次微分方程的通解为,因为可导,所以为驻点,即,所以,故(13)设3阶矩阵的特征值为,其中E为3阶单位矩阵,则行列式【答案】 【解析】的所有特征值为的所有特征值为所以.(14)设二维随机变量服从正态分布,则【解析】由题设知,而且相互独立,从而 .三、解答题:1523小题,共94

4、分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10 分)设函数.若与在时是等价无穷小,求的值.【解析】法一:因为,则有,可得:,所以,法二:由已知可得得由分母,得分子,求得c;于是 由分母,得分子,求得;进一步,b值代入原式,求得 (16)(本题满分10 分)计算二重积分,其中【解析】(17)(本题满分10分)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设为该商品的需求量,为价格,MC为边际成本,为需求弹性.(I) 证明定价模型为;(II) 若该商品的成本函数为,需求函数为,试由(I)中的定价模型确定此商品的价格.(I)略(II) .(I

5、)由于利润函数,两边对求导,得.当且仅当时,利润最大,又由于,所以,故当时,利润最大.(II)由于,则代入(I)中的定价模型,得,从而解得.(18)(本题满分10 分)设函数在定义域上的导数大于零,若对任意的,曲线在点处的切线与直线及轴所围成区域的面积恒为4,且,求表达式.【解析】曲线的切线方程为,切线与轴的交点为故面积为:故满足的方程为,此为可分离变量的微分方程,解得,又由于,带入可得,从而(19)(本题满分 10分)(I)设函数可导,利用导数定义证明(II)设函数可导,写出的求导公式.(I)(II)由题意得(20) (本题满分 11分) 设矩阵,且.(I) 求的值;(II)若矩阵满足,其中

6、为3阶单位矩阵,求.(II)由题意知,(21) (本题满分11 分)设矩阵相似于矩阵.(II)求可逆矩阵,使为对角矩阵.(1) 的特征值时的基础解系为A的特征值令,(22) (本题满分11 分)设随机变量的概率密度为,对进行独立重复的观测,直到第2个大于3的观测值出现时停止,记为观测次数(I)求的概率分布;(II)求. (I), ;(II).(I) 记为观测值大于3的概率,则,从而, 为的概率分布;(II) 法一:分解法:将随机变量分解成两个过程,其中表示从到次试验观测值大于首次发生,表示从次到第试验观测值大于首次发生.则,(注:Ge表示几何分布)法二:直接计算记,则,从而. (23) (本题满分11 分)设总体的概率密度为其中为未知参数,为来自该总体的简单随机样本.(I)求的矩估计量;(II)求的最大似然估计量.(I) ; (II).(I) ,令,即,解得为的矩估计量 ;(II)似然函数,当时,则.从而,关于单调增加,所以为的最大似然估计量.文档容由金程考研网 整理发布。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1