1、X3X4X5X6P1P2P31637-6否P410是P52P1P2 P6721-400044P1P3P450 0 _ 8 0 0P1P3P50 0 - 0 8 0P1P3P610003P1P4 P5000350P1P4P65150 0 2 0最优解 x 0,10,0,7,0,0(b)约束方程组的系数矩阵12 3 4 A2 2 1241125435石T最优解x 2,0,11,0551.3(1)图解法最优解即为3x1 4x2 9的解x 1,色,最大值z 355x1 2x2822(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z 10x1 5x2 0x3 0x43xi 4x
2、2 X39st.5x1 2x2 x488 9 min ,-5 3则P3,P4组成一个基。令xi X20得基可行解x 0,0,9,8,由此列出初始单纯形表CjcB基b0x390x485CjZjCBb211481 2 CjZj010221 8320, min ,-14 22新的单纯形表为5x210X1125352x2最优解即为6x124的解x317-,最大值z $首先在各约束条件上添加松弛变量,将问题转化为标准形式max z 2x1 x2 0x3 0x4OX5表明已找到问题最优解x11, x2-,x30,x40。最大值z5x2 x315st.6x1 2x2 x4 24捲 X2 X55则F3, F4
3、, F5组成一个基。令 XiX20Cb15cjZj得基可行解x 0,0,15,24,5,由此列出初始单纯形表min24 561 2。2 0,1533min , 24,-522一1 ,0,表明已找到问题最优解X11, X2X40,X5最大171.6在约束条件中添加松弛变量或剩余变量,且令x2x2x2 x20, x2X3, Z Z该问题转化为max z3X1 X2 X22X3 0X4 0X52x1 3x2 3x2 4x3 x412丄4X1 X2 X2 2X3 X58St.3x1 x2 x2 3x3 6iniX1,X2, X2, X3,X4, X50其约束系数矩阵为3 41 0A 41 20 113
4、0 0在A中人为地添加两列单位向量P7 ,Ps3411 2 013 0令3x1 x22x3 0x4 0x5 Mx6 Mx7得初始单纯形表MCb基bnX70X412M x68-2-1M x76-3Cj Zj3 7M 1 1 2 5M 0 M 0 0(b)在约束条件中添加松弛变量或剩余变量,且令X3X3 x;X3 0,x; 0 z z 3x1 5x2 x3 x3 0x4 0x5X! 2x22x13x3A 25x3Xn X2, X3, X3, X4, X5在A中人为地添加两列单位向量P7 ,P8令maxz3x15x2IIx3 0x4 0x5 Mx6 Mx7-5-M基b2M 53M1+6M-1-6M-M 01.7解1 :大M法在上述线性规划问题中分别减去剩余变量x4, x6, x8,再加上人工变量x5, x7 ,x9,得max z2x1x22x30x4Mx50x6Mx70x8Mx9s,t.2%X3x6X3X8X9Xi,X2,X3,X4,X5,X6,X7,X8,X90其中M是一个任意大的正数。据此可列出单纯形表Cb 基 bX8iM x5 6M x7 2M x9 022 M12 M3/21/ 211 x2 01/25M 3M 11 3M2 2M x5 343/42X321x2 13M 35M3 M 1