1、辽宁省沈阳市九年级上学期期中数学试题辽宁省沈阳市九年级上学期期中数学试题姓名:_ 班级:_ 成绩:_一、 单选题 (共10题;共20分)1. (2分) (2019九上凤山期中) 下列方程中,关于x的一元二次方程是( ) A . B . C . D . 2. (2分) (2019东湖模拟) 在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有( ) A . 12个B . 14个C . 18个D . 28个3. (2分) 如果四条线段a、b、c、d构成= , m0,则下列式子中,成立的是( )A .
2、 =B . =C . =D . =4. (2分) (2019容县模拟) 下列命题是真命题的是( ) A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是菱形C . 对角线互相垂直平分的四边形是正方形D . 对角线互相平分的四边形是平行四边形5. (2分) 关于x的一元二次方程(2x1)2b的根的情况是( )A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法判定6. (2分) 用两个完全相同的直角三角形拼下列图形:(1)平行四边形,(2)矩形,(3)菱形,(4)正方形,(5)等腰三角形,(6)等边三角形,一定可以拼成的图形是( )A . (1)(4)
3、(5)B . (2)(5)(6)C . (1)(2)(3)D . (1)(2)(5).7. (2分) (2017九下钦州港期中) 下列四组图形中,一定相似的是( ) A . 正方形与矩形B . 正方形与菱形C . 菱形与菱形D . 正五边形与正五边形8. (2分) (2017八下瑶海期中) 为了美化环境,加大对绿化的投资2008年用于绿化投资20万元,2010年用于绿化投资25万元,求这两年绿化投资的年平均增长率设这两年绿化投资的年平均增长率为x,根据题意所列方程为( )A . 20x2=25B . 20(1+x)=25C . 20(1+x)+20(1+x)2=25D . 20(1+x)2=2
4、59. (2分) 如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是( )A . 750米B . 1000米C . 1500米D . 2000米10. (2分) 下列关于x的一元二次方程中,有两个相等的实数根的方程是( )A . x2-2x+1=0B . x2+1=0C . 4x2-x+2=0D . 4x2-x+1=0二、 填空题 (共6题;共7分)11. (1分) (2018永定模拟) 当a,b互为相反数,则代数式a2+ab2的值为_12. (1分) (2018八上南召期末
5、) 已知a+b3,ab1,则a2ab+b2_. 13. (1分) 在某十字路口,汽车可直行、可左转、可右转(如图)。若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为_。14. (2分) (2018潜江模拟) 一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km后报废;若把它安装在后轮,则自行车行驶3000km后报废,行驶一定路程后可以交换前、后轮胎如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶_km 15. (1分) 人体下半身(脚底到肚脐的长度)与身高的比例越接近0.618,越给人美感遗憾的是,即使是身材修长的芭蕾舞演员也达不到如此的完美某女士,身
6、高1.68m,下半身1.02m,她应选择_cm(取两位有效数字)高的高跟鞋看起来更美 16. (1分) 如图,坐标平面上,ABCDEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC,若A、B、C的坐标分别为(3,1)、(6,3)、(1,3),D、E两点在y轴上,则F点到y轴的距离为_ 三、 解答题 (共9题;共85分)17. (5分) 解方程:(1) x2-2x-20(2)3y(y-1)=2(y-1)18. (2分) (2018嘉兴模拟) 有一只拉杆式旅行箱(图1),其侧面示意图如图2所示已知箱体长AB=50 cm,拉杆BC的伸长距离最大时可达35cm,点A,B,C在同一条直线上
7、在箱体底端装有圆形的滚轮 。 与水平地面MN相切于点D在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平地面的距离CE为59cm设AFMN(1) 求 (2) 当人的手自然下垂拉旅行箱时,人感到较为舒服某人将手自然下垂在C端拉旅行箱时,CE为80cm,CAF=64求此时拉杆BC的伸长距离(精确到1cm,参考数据:sin64 0.9,cos64=0.39,tan64 2.1)19. (10分) (1) 已知a=4,c=9,若b是a,c的比例中项,求b的值(2) 已知线段MN是AB,CD的比例中项,AB=4cm,CD=5cm,求MN的长并思考两题有何区别20. (10分) (2015
8、八上平武期中) 如图,点B,D,C,F在一条直线上,且BC=FD,AB=EF(1) 请你只添加一个条件(不再加辅助线),使ABCEFD,你添加的条件是_; (2) 添加了条件后,证明ABCEFD21. (10分) 曲靖市某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米3240元的均价开盘销售(1) 求平均每次下调的百分率;(2) 某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:打9.9折销售;不打折,送两年物业管理费,物业管理费是每平方米每月1
9、.4元,请问哪种方案更优惠?22. (15分) (2017九上赣州开学考) 如图已知AOB,OA=OB,点E在OB边上,四边形AEBF是矩形,请你只用无刻度的直尺在图中画出菱形AOBG(请保留画图痕迹)23. (7分) (2017临泽模拟) 有三张卡片(形状、大小、颜色、质地都相等),正面分别写上整式x2+1,x22,3将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式 (1) 请用画树状图或列表的方法,写出代数式 所有可能的结果; (2) 求代数式 恰好是分式的概率 24. (11分) (2017武汉模拟) 如
10、图,抛物线y= x2+ x (k0)与x轴交于点A、B,点A在点B的右边,与y轴交于点C(1) 如图1,若ACB=90求k的值_;点P为x轴上方抛物线上一点,且点P到直线BC的距离为 ,则点P的坐标为_(请直接写出结果)(2) 如图2,当k=2时,过原点O的任一直线y=mx(m0)交抛物线于点E、F(点E在点F的左边)若OF=2OE,求直线y=mx的解析式;求 + 的值25. (15分) (2017永修模拟) (背景)某班在一次数学实践活动中,对矩形纸片进行折叠实践操作,并将其产生的数学问题进行相关探究 (操作)如图,在矩形ABCD中,AD=6,AB=4,点P是BC边上一点,现将APB沿AP对折,得APM,显然点M位置随P点位置变化而发生改变(问题)试求下列几种情况下:点M到直线CD的距离(1) APB=75; (2) P与C重合; (3) P是BC的中点 参考答案一、 单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、 填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、 解答题 (共9题;共85分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1