1、人教版初中数学八年级上册第十一章三角形单元检测题含答案解析 第十一章三角形单元检测题一、选择题(每小题只有一个正确答案) 1.小明有两根3cm、7cm的木棒,他想以这两根木棒为边做一个三角形,还需再选用的木棒长为()A 3cm B 4cm C 9cm D 10cm2.如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A 锐角三角形 B 直角三角形 C 钝角三角形 D 任意三角形3.一个多边形切去一个角后,形成的另一个多边形的内角和为1080,那么原多边形的边数为()A 7 B 7或8 C 8或9 D 7或8或94.如图,直线ab,直线AC分别交a、b于点B、C,直线AD交a于点
2、D若1=20,2=65,则3度数等于()A 30 B 45 C 60 D 855.设三角形三边之长分别为3,8,12a,则a的取值范围为()A 3a6 B 5a2 C 2a5 Da5或a26.三角形按角分类可以分为()A 锐角三角形、直角三角形、钝角三角形B 等腰三角形、等边三角形、不等边三角形C 直角三角形、等边直角三角形D 以上答案都不正确7.如图,用数字标注了3个三角形,其中ABD表示的是( )A B C D 都不对8.如图,在ABC中,AD平分BAC且与BC相交于点D,B=40,BAD=30,则C的度数是()A 70 B 80 C 100 D 1109.三角形三个内角的度数分别是(x+
3、y),(x-y),x,且xy0,则该三角形有一个内角为()A 30 B 45 C 90 D 6010.如图,在四边形ABCD中,对角线BD平分ABC,若ABD=31,则ABC的度数是()A 31 B 61 C 60 D 6211.如图,点D在BC的延长线上,连接AD,则EAD是()的外角.A ABC BACD C ABD D 以上都不对12.如图,在折纸活动中,小明制作了一张ABC纸片,点D、E分别是边AB、AC上的点,将ABC沿着DE折叠压平,A与A重合,若A=70,则1+2=()A 110 B 140 C 220 D 70二、填空题 13.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条
4、,这样凳子就比较牢固了,他所应用的数学原理是 14.如图,在ABC中,若AD是BAC的平分线,则 = = ;若AE=CE,则BE是AC边上的 ;若CF是AB边上的高,则 = =90,CF AB15.某机器零件的横截面如图所示,按要求线段AB和DC的延长线相交成直角才算合格,一工人测得A=23,D=31,AED=143,请你帮他判断该零件是否合格 (填“合格”或“不合格”)16.将一副直角三角板,按如图所示叠放在一起,则图中的度数是 17.如图,已知ABBD,BCCD,a=5,b=4,则BD的长的取值范围为 .三、解答题 18.已知AD、AE分别是ABC的高和中线,且AB=8cm,AC=5cm,
5、则ABE比ACE的周长长多少?ABE与ACE的面积有什么关系?19.如图,RtABC中,ACB=90,CD是AB边上的高,写出分别与1,2相等的角,并说明理由20.(1)如图1,D1是ABC的边AB上的一点,则图中有哪几个三角形?(2)如图2,D1,D2是ABC的边AB上的两点,则图中有哪几个三角形?(3)如图3,D1,D2,D10是ABC的边AB上的10个点,则图中共有多少个三角形?21.已知BD是ABC的中线,ABD的周长比BCD的周长大2cm,若ABC的周长为18cm,且AC=4cm,求AB和BC的长22.如图,ABC的高AD,BE相交于点F仅用直尺能否作出AB边上的高线?说明理由23.
6、将一副三角板拼成如图所示的图形,过点C作CF平分DCE交DE于点F(1)求证:CFAB;(2)求DFC的度数24.如图,已知在四边形ABCD中,B=D=90度,AE、CF分别是DAB及DCB的平分线则AE与FC有什么关系?请说明理由答案解析1.【答案】C【解析】73=4,7+3=10,因而4第三根木棒10,只有C中的9满足故选C2.【答案】A【解析】利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是锐角三角形故选A3.【答案】D【解析】设内角和为1080的多边形的边数是n,则(n-2)180=1080,解得:n=8则原多边形的边数为7或8或9故选D4.
7、【答案】B【解析】直线ab,2=4,又4=1+3,2=1+3,3=2-1=65-20=45故选B5.【答案】B【解析】由题意得:8312a8+3,解得:5a2,故选B6.【答案】A【解析】三角形按角分类可以分为锐角三角形、直角三角形、钝角三角形,故选A7.【答案】A【解析】由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,所以ABD表示的是;图表示的是ADC;图表示的是BDC.8.【答案】B【解析】利用三角形角平分线的性质和内角和是180度的性质可求AD平分BAC,BAD=30,BAC=60,C=1806040=80故选B9.【答案】D【解析】三个内角的度数分别是(x+y),(x
8、-y),x,三角形内角和为180,x+y+x-y+x=180,3x=180,x=60,故选D10.【答案】D【解析】BD平分ABCABC=2ABD,ABD=31ABC=6211.【答案】C【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中EAD是ABD的外角,所以正确的选项是C.12.【答案】B【解析】A=70,ADE+AED=180-70=110,ABC沿着DE折叠压平,A与A重合,ADE=ADE,AED=AED,1+2=180-(AED+AED)+180-(ADE+ADE)=360-2110=140故选B13.【答案】三角形的稳定性【解析】给凳子加了两根木条,这样凳子就
9、比较牢固了,应用的数学原理是三角形的稳定性.14.【答案】BAD;CAD;BAC;中线;AFC;BFC;【解析】在ABC中,若AD是BAC的平分线,则BAD=CAD=BAC;若AE=CE,则BE是AC边上的中线;若CF是AB边上的高,则AFC=BFC=90,CFAB15.【答案】不合格【解析】延长AB、DC相交F,连接F、E并延长至G则有(A+AFG)+(D+DFG)=AEG+DEG=AED=143;A=23,D=31,AFD=AFG+DFG=AED-A-D=143-23-31=8990所以零件不合格16.【答案】75【解析】如图,1=90-60=30, =30+45=75 故答案为:7517
10、.【答案】4DB5【解析】在RtBCD中,BDCD,CD=b,BDb,在RtBAD中,ADBD,AD=a,DBa,bDBa4DB518.【答案】解:如图,ABE的周长=AB+AE+BE,ACE的周长=AC+AE+CE,AE是BC的中线,BE=CE,AB=8cm,AC=5cm,ABE的周长-ACE的周长=AB+AE+BE-AC-AE-CE=AB-AC=3cm,ABE与ACE的底相等,高都是AD,ABE与ACE它们的面积相等【解析】由题意可知:ABE与ACE的周长的差=AB-AC,三角形的中线把三角形分成面积相等的两个三角形19.【答案】解:1=B,2=A理由如下:ACB=90,CD是AB边上的高
11、,1+2=90,1+A=90,2+B=90,1=B,2=A【解析】根据直角三角形两锐角互余解答即可20.【答案】(1)图中三角形有:ABC、AD1C、AD1B共3个;(2)图中三角形有:ACD1、ACD2、ABC、D1CD2、D1CB、D2CB共6个,(3)直线AB上有12个点,直线AB上的线段共有:=66(条),即图中共有66个三角形【解析】21.【答案】解:BD是ABC的中线,AD=CD=AC,ABD的周长比BCD的周长大2cm,(AB+AD+BD)-(BD+CD+BC)=AB-BC=2,ABC的周长为18cm,且AC=4cm,4+AB+BC=18,联立得:AB=8,BC=6故AB长8cm
12、,BC长6cm【解析】由BD是ABC的中线,可得AD=CD=AC,由ABD的周长比BCD的周长大2cm,可得AB-BC=2,由ABC的周长为18cm,且AC=4cm,可得4+AB+BC=18,联立即可求出AB与BC的长22.【答案】解:仅用直尺能作出AB边上的高线,理由如下:因为锐角三角形的三条高相交于三角形内一点,由于ABC的高AD,BE相交于点F,所以AB边上的高一定经过点F,而由三角形的高的定义可知,AB边上的高经过点C,所以连结CF并延长与AB交于点G,则CG为AB边上的高线故仅用直尺能作出AB边上的高线【解析】根据锐角三角形的三条高相交于三角形内一点,可知连结CF并延长与AB交于点G
13、,则CG为AB边上的高线23.【答案】解:(1)由三角板的性质可知D=30,3=45,DCE=90CF平分DCE,1=2=DCE=45,1=3,CFAB(2)由三角形内角和可得DFC=180-1-D=180-45-30=105【解析】由三角板各角的度数可知3=45,DCE=90,由CF平分DCE得1=2=45,所以1=3,可得CFAB,由三角形内角和可求DFC的度数24.【答案】证明:B=D=90,BAD+B+BCD+D=360,DAB+DCB=180,AE、CF分别是DAB及DCB的平分线、DAE+DCF=90,又DFC+DCF=90,DFC=DAE,AECF【解析】由四边形的内角和推出DAB与DCB互补,由角平分线推出DAE与DCF互余,再由DFC与DCF互余推出DFC=DAE,所以AECF
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1