ImageVerifierCode 换一换
格式:PPTX , 页数:1222 ,大小:89.53MB ,
资源ID:1181226      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/1181226.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新人教版九年级数学上册全册全套课件.pptx)为本站会员(b****9)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

新人教版九年级数学上册全册全套课件.pptx

1、人教版(数学)九年级(上册),全册课件,精品,21.1 一元二次方程,第二十一章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.理解一元二次方程的概念.(难点)2.根据一元二次方程的一般形式,确定各项系数.3.理解并灵活运用一元二次方程概念解决有关问题.(重点),导入新课,复习引入,没有未知数,代数式,一元一次方程,二元一次方程,不等式,分式方程,2.什么叫方程?我们学过哪些方程?,含有未知数的等式叫做方程.,我们学过的方程有一元一次方程,二元一次方程(组)及分式方程,其中前两种方程是整式方程.,3.什么叫一元一次方程?,含有一个未知数,且未知数的次数是1的整式方程叫做一

2、元一次方程.,问题1:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周凸出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?,100cm,50cm,x,3600cm2,解:设切去的正方形的边长为xcm,则盒底的长为(1002x)cm,宽为(502x)cm,根据方盒的底面积为3600cm2,得,化简,得,讲授新课,该方程中未知数的个数和最高次数各是多少?,问题2:要组织要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛

3、?,解:根据题意,列方程:,化简,得:,该方程中未知数的个数和最高次数各是多少?,问题3 在一块宽20m、长32m的矩形空地上,修筑宽相等的三条小路(两条纵向,一条横向,纵向与横向垂直),把矩形空地分成大小一样的六块,建成小花坛.如图要使花坛的总面积为570m2,问小路的宽应为多少?,1.若设小路的宽是xm,那么横向小路的面_m2,纵向小路的面积是 m2,两者重叠的面积是 m2.,32x,2.由于花坛的总面积是570m2.你能根据题意,列出方程吗?,整理以上方程可得:,思考:,220 x,3220(32x220 x)2x2=570,2x2,x2-36x35=0,想一想:,还有其它的列法吗?试说

4、明原因.,(20-x)(32-2x)=570,32-2x,20-x,观察与思考,方程、都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?,特点:,都是整式方程;,只含一个未知数;,未知数的最高次数是2.,x2-36x35=0,只含有一个未知数x的整式方程,并且都可以化为ax2+bx+c=0(a,b,c为常数,a0)的形式,这样的方程叫做一元二次方程.,ax2+bx+c=0(a,b,c为常数,a0),ax2 称为二次项,a 称为二次项系数.bx 称为一次项,b 称为一次项系数.c 称为常数项.,知识要点,一元二次方程的概念,一元二次方程的一般形式是,想一想 为什

5、么一般形式中ax2+bx+c=0要限制a0,b、c 可以为零吗?,当 a=0 时,bxc=0,当 a 0,b=0时,,ax2c=0,当 a 0,c=0时,,ax2bx=0,当 a 0,b=c=0时,,ax2=0,总结:只要满足a 0,b,c 可以为任意实数.,典例精析,例1 下列选项中,关于x的一元二次方程的是(),C,不是整式方程,含两个未知数,化简整理成x2-3x+2=0,少了限制条件a0,判断下列方程是否为一元二次方程?,(2)x3+x2=36,(3)x+3y=36,(5)x+1=0,(1)x2+x=36,例2:a为何值时,下列方程为一元二次方程?,(1)ax2x=2x2,(2)(a1)

6、x|a|+1 2x7=0.,解:(1)将方程式转化为一般形式,得(a-2)x2-x=0,所以当a-20,即a2时,原方程是一元二次方程;(2)由a+1=2,且a-1 0知,当a=-1时,原方程是一元二次方程.,方法点拨:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值,变式:方程(2a-4)x22bx+a=0,(1)在什么条件下此方程为一元二次方程?(2)在什么条件下此方程为一元一次方程?,解(1)当 2a40,即a 2 时是一元二次方程,(2)当a=2 且 b 0 时是一元一次方程,思考:一元一次方程与一元二次方程有

7、什么区别与联系?,ax=b(a0),ax2+bx+c=0(a0),整式方程,只含有一个未知数,未知数最高次数是1,未知数最高次数是2,例3:将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数.,解:,去括号,得,3x2-3x=5x+10.,移项、合并同类项,得一元二次方程的一般形式,3x2-8x-10=0.,其中二次项是3x2,系数是3;一次项是-8x,系数是-8;常数项是-10.,一元二次方程的根,使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解(又叫做根).,练一练:下面哪些数是方程 x2 x 6=0 的解?-4,-3,-2,-1,

8、0,1,2,3,4,解:,3和-2.,你注意到了吗?一元二次方程可能不止一个根.,例4:已知a是方程 x2+2x2=0 的一个实数根,求 2a2+4a+2018的值.,解:由题意得,方法点拨:求代数式的值,先把已知解代入,再注意观察,有时需运用到整体思想,求解时,将所求代数式的一部分看作一个整体,再用整体思想代入求值,当堂练习,1.下列哪些是一元二次方程?,3x+2=5x-2,x2=0,(x+3)(2x-4)=x2,3y2=(3y+1)(y-2),x2=x3+x2-1,3x2=5x-1,2.填空:,-2,1,3,1,3,-5,4,0,-5,3,-2,4.已知方程5x+mx-6=0的一个根为4,

9、则的值为_,3.关于x的方程(k21)x2 2(k1)x 2k 20,当k 时,是一元二次方程当k 时,是一元一次方程,1,1,4.(1)如图,已知一矩形的长为200cm,宽150cm.现在矩形中挖去一个圆,使剩余部分的面积为原矩形面积的四分之三.求挖去的圆的半径xcm应满足的方程(其中取3).,解:设由于圆的半径为xcm,则它的面积为 3x2 cm2.,整理,得,根据题意有,,200cm,150cm,(2)如图,据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆.求该市两年来汽车拥有量的年平均增长率x应满足的方程.,解:该市两年来汽车拥有量的年平均增长率为x,整理,得,

10、根据题意有,,5.已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的值.,解:由题意把x=3代入方程x2+ax+a=0,得,32+3a+a=0,9+4a=0,4a=-9,6.若关于x的一元二次方程(m+2)x2+5x+m2-4=0,有一个根为0,求m的值.,解:将x=0代入方程m2-4=0,,解得m=2.,m+2 0,,m-2,,综上所述:m=2.,拓广探索 已知关于x的一元二次方程 ax2+bx+c=0(a0)一个根为1,求a+b+c的值.,解:由题意得,思考:1.若 a+b+c=0,你能通过观察,求出方程ax2+bx+c=0(a0)的一个根吗?,解:由题意得,方程ax2+bx+

11、c=0(a0)的一个根是1.,2.若 a-b+c=0,4a+2b+c=0,你能通过观察,求出方程ax2+bx+c=0(a0)的一个根吗?,x=2,课堂小结,一元二次方程,概念,是整式方程;含一个未知数;最高次数是2.,一般形式,ax2+bx+c=0(a 0)其中(a0)是一元二次方程的必要条件;,根,使方程左右两边相等的未知数的值.,21.2.1 配方法,第二十一章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第1课时 直接开平方法,学习目标,1.会把一元二次方程降次转化为两个一元一次方程.(难点)2.运用开平方法解形如x2=p或(x+n)2=p(p0)的方程.(重点),1.如果 x

12、2=a,则x叫做a的.,导入新课,复习引入,平方根,2.如果 x2=a(a 0),则x=.,3.如果 x2=64,则x=.,8,4.任何数都可以作为被开方数吗?,负数不可以作为被开方数.,讲授新课,问题:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?,解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可列出方程,106x2=1500,,由此可得,x2=25,开平方得,即x1=5,x2=5.,因棱长不能是负值,所以正方体的棱长为5dm,x=5,,试一试:解下列方程,并说明你所用的方法,与同伴交流.,(1)

13、x2=4,(2)x2=0,(3)x2+1=0,解:根据平方根的意义,得x1=2,x2=-2.,解:根据平方根的意义,得x1=x2=0.,解:根据平方根的意义,得 x2=-1,因为负数没有平方根,所以原方程无解.,(2)当p=0 时,方程(I)有两个相等的实数根=0;,(3)当p0 时,因为任何实数x,都有x20,所以方程(I)无实数根.,探究归纳,一般的,对于可化为方程 x2=p,(I),(1)当p0 时,根据平方根的意义,方程(I)有两个不等的实数根,;,例1 利用直接开平方法解下列方程:,解:,(1)x2=6,,直接开平方,得,(2)移项,得,x2=900.,直接开平方,得,x=30,,x

14、1=30,x2=30.,典例精析,在解方程(I)时,由方程x2=25得x=5.由此想到:(x+3)2=5,得,对照上面方法,你认为怎样解方程(x+3)2=5,探究交流,于是,方程(x+3)2=5的两个根为,上面的解法中,由方程得到,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程转化为我们会解的方程了.,解题归纳,例2 解下列方程:(x1)2=2;,解析:第1小题中只要将(x1)看成是一个整体,就可以运用直接开平方法求解.,解:(1)x+1是2的平方根,,x+1=,解析:第2小题先将4移到方程的右边,再同第1小题一样地解.,例2 解下列方程:(2)(x1)24=0;,即

15、x1=3,x2=-1.,解:(2)移项,得(x-1)2=4.,x-1是4的平方根,,x-1=2.,(3)12(32x)23=0.,解析:第3小题先将3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.,解:(3)移项,得12(3-2x)2=3,,两边都除以12,得(3-2x)2=0.25.,3-2x是0.25的平方根,,3-2x=0.5.,即3-2x=0.5,3-2x=-0.5,解:,方程的两根为,解:,方程的两根为,例3 解下列方程:,1.能用直接开平方法解的一元二次方程有什么特点?,如果一个一元二次方程具有x2=p或(xn)2=p(p0)的形式,那么就可以用

16、直接开平方法求解.,2.任意一个一元二次方程都能用直接开平方法求解吗?请举例说明.,探讨交流,当堂练习,(D)(2x+3)2=25,解方程,得2x+3=5,x1=1;x2=-4,1.下列解方程的过程中,正确的是(),(A)x2=-2,解方程,得x=,(B)(x-2)2=4,解方程,得x-2=2,x=4,D,(1)方程x2=0.25的根是.(2)方程2x2=18的根是.(3)方程(2x-1)2=9的根是.,3.解下列方程:(1)x2-810;(2)2x250;(3)(x1)2=4.,x1=0.5,x2=-0.5,x13,x2-3,x12,x21,2.填空:,解:x19,x29;,解:x15,x25;,解:x11,x23.,4.(请你当小老师)下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.,解:,解:不对,从开始错,应改为,解方程:,挑战自我,解:,方程的两根为,课堂小结,直接开平方法,概念,步骤,基本思路,利用平方根的定义求方程的根的方法,关键要把方程化成 x2=p(p 0)或(x+n)2=p(p 0).,一元二次方程,两个一元一次方

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1