ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:57.42KB ,
资源ID:11724080      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/11724080.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(三极管参数等.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

三极管参数等.docx

1、三极管参数等附件A、三极管的Pspice模型参数.Model NPN(PNP、LPNP) model parameters模型参数含 义单 位默认值备 注AF flicker noise exponent 1.0噪声指数BFideal maximum forward beta 100.0最大正向放大倍数BRideal maximum reverse beta 1.0最大反向放大倍数CJCbase-collector zero-bias p-n capacitancefarad0.0集电结电容CJEbase-emitter zero-bias p-n capacitancefarad0.0发射结

2、电容CJS (CCS) Substrate zero-bias p-n capacitance farad0.0零偏集电极-衬底电容EG bandgap voltage (barrier height) eV1.11FCforward-bias depletion capacitor coefficient 0.5GAMMA epitaxial region doping factor 1E-11IKF (IK) corner for forward-beta high-current roll-offampinfiniteIKR corner for reverse-beta high-cu

3、rrent roll-offampinfiniteIRB current at which Rb falls halfway to ampinfiniteIS transport saturation currentamp1E-16饱和电流ISC (C4) base-collector leakage saturation currentamp0.0集电结漏电流ISE (C2)base-emitter leakage saturation currentamp0.0发射结漏电流ISS substrate p-n saturation current amp0.0ITFtransit time

4、dependency on Ic amp0.0KF flicker noise coefficient 0.0噪声系数MJC (MC) base-collector p-n grading factor0.33MJE (ME) base-emitter p-n grading factor 0.33MJS (MS) substrate p-n grading factor0.0NCbase-collector leakage emission coefficient 2.0集电结漏电系数NE base-emitter leakage emission coefficient1.5发射结漏电系数

5、NF forward current emission coefficient 1.0正向电流系数NKhigh-current roll-off coefficient 0.5NRreverse current emission coefficient1.0NSsubstrate p-n emission coefficient 1.0PTF excess phase 1/(2?TF)Hz degree0.0QCOepitaxial region charge factor coulomb0.0RBzero-bias (maximum) base resistanceohm0.0最大基极电阻R

6、BMminimum base resistance ohmRB最小基极电阻RCcollector ohmic resistanceohm0.0RCO epitaxial region resistance ohm0.0RE emitter ohmic resistance ohm0.0TF ideal forward transit time sec0.0正向传递时间TRideal reverse transit timesec 0.0反向传递时间TRB1RB temperature coefficient (linear) 0C -10.0RB的温度系数TRB2 RB temperature

7、 coefficient (quadratic) 0C -20.0TRC1 RC temperature coefficient (linear) 0C -10.0TRC2RC temperature coefficient (quadratic)0C -20.0TRE1 RE temperature coefficient (linear) 0C -10.0TRE2 RE temperature coefficient (quadratic) 0C -20.0TRM1 RBM temperature coefficient (linear) 0C -10.0TRM2RBM temperatu

8、re coefficient (quadratic) 0C -20.0T_ABS absolute temperature 0C T_MEASURED measured temperature 0C T_REL_GLOBAL relative to current temperature 0C T_REL_LOCALrelative to AKO model temperature0C VAF (VA)forward Early voltage voltinfiniteVAR (VB) reverse Early voltage voltinfiniteVJC (PC) base-collec

9、tor built-in potential volt0.75VJE (PE) base-emitter built-in potential volt0.75VJS (PS) substrate p-n built-in potential volt0.75VO carrier mobility knee voltage volt10.0VTFtransit time dependency on VbcvoltinfiniteXCJC fraction of CJC connected internally to Rb 1.0XCJC2fraction of CJC connected in

10、ternally to Rb 1.0XTB forward and reverse beta temperature coefficient 0.0正向和反向放大倍数的温度影响系数XTFtransit time bias dependence coefficient 0.0传递时间系数XTI (PT) IS temperature effect exponent 3.0IS的温度影响系数附件B、 PSpice Goal Function特征函数功能说明Bandwidth (1, db_level)计算波形1从最大值下降db_level db的波形宽度。BPBW (1, db_level)Sam

11、e as Bandwidth (1, db_level)CenterFreq (1, db_level) 计算波形1从最大值下降db_level db的两点的中心频率。Falltime (1)计算波形1的下降时间。Gain Margin (1,2)计算波形1的相位为-180。时,波形2的分贝值。 GenFall (1)类似于Falltime (1),但它的下降时间相对的y轴是起点于终点,而不是最大值与最小值。GenRise (1)与GenFall (1)类似,只是它是上升时间。HPBW (1, db_level)查找第一次比最大值低db_level db的x坐标。(上升沿)LPBW (1, d

12、b_level) 与HPBW类似,只是用于下降沿。Maxr (1, begin-x, end-x)查找区间的最大值。Overshoot (1)计算最大值与终点之间y轴坐标差与终点值的百分比。Peak (1, n_occur)查找第n-occur个峰值点的Y值Period (1)计算波形1的周期。Phase Margin (1,2)查找波形1在0分贝时波形2的相位。Pulsewidth (1)计算波形1的脉冲宽度。Risetime (1)计算波形1的上升时间。Swingr (1, begin-x, end-x) 计算在指定范围内,波形1的最大值与最小值之差。TPmW2 (1, Period)Xa

13、tNthy (1, Y-value, n-occur)查找波形1上第n-occur个Y-value值时的X坐标值。XatNthYn(1,Y_value,n_occur)与XatNthy类似,但它查找的Y值必须在下降沿上。XatNthYp(1,Y_value,n_occur)与XatNthy类似,但它查找的Y值必须在上升沿上。XatNthYpct(1,Y_PCT,n_occur)查找第n-occur个Y轴值为Y轴范围的Y_pct%时的X轴值。YatX(1,X_value)查找X-value值处的Y值。YatXpct(1,X_pct)查找X轴值为X轴范围的X_pct%时的Y轴值。附件C Model

14、ing voltage-controlled and temperature-dependent resistorsAnalog Behavioral Modeling (ABM) can be used to model a nonlinear resistor through use of Ohm抯 law and tables and expressions which describe resistance. Here are some examples.Voltage-controlled resistorIf a Resistance vs. Voltage curve is av

15、ailable, a look-up table can be used in the ABM expression. This table contains (Voltage, Resistance) pairs picked from points on the curve. The voltage input is nonlinearly mapped from the voltage values in the table to the resistance values. Linear interpolation is used between table values.Let抯 s

16、ay that points picked from a Resistance vs. Voltage curve are:VoltageResistance0.5251.0502.0100The ABM expression for this is shown in Figure 1.Figure 1 - Voltage controlled resistor using look-up tableTemperature-dependent resistorA temperature-dependent resistor (or thermistor) can be modeled with

17、 a look-up table, or an expression can be used to describe how the resistance varies with temperature. The denominator in the expression in Figure 2 is used to describe common thermistors. The TEMP variable in the expression is the simulation temperature, in Celsius. This is then converted to Kelvin

18、 by adding 273.15. This step is necessary to avoid a divide by zero problem in the denominator, when T=0 C.NOTE: TEMP can only be used in ABM expressions (E, G devices).Figure 3 shows the results of a DC sweep of temperature from -40 to 60 C. The y-axis shows the resistance or V(I1:-)/1A.Figure 2 -

19、Temperature controlled resistor Figure 3 - PSpice plot of Resistance vs. Temperature (current=1A)Variable Q RLC networkIn most circuits the value of a resistor is fixed during a simulation. While the value can be made to change for a set of simulations by using a Parametric Sweep to move through a f

20、ixed sequence of values, a voltage-controlled resistor can be made to change dynamically during a simulation. This is illustrated by the circuit shown in Figure 5, which employs a voltage-controlled resistor. Figure 4 - Parameter sweep of control voltageThis circuit employs an external reference com

21、ponent that is sensed. The output impedance equals the value of the control voltage times the reference. Here, we will use Rref, a 50 ohm resistor as our reference. As a result, the output impedance is seen by the circuit as a floating resistor equal to the value of V(Control) times the resistance v

22、alue of Rref. In our circuit, the control voltage value is stepped from 0.5 volt to 2 volts in 0.5 volt steps, therefore, the resistance between nodes 3 and 0 varies from 25 ohms to 100 ohms in 25 ohm-steps.Figure 5 - Variable Q RLC circuit Figure 6 - Output waveforms of variable Q RLC circuitA tran

23、sient analysis of this circuit using a 0.5 ms wide pulse will show how the ringing differs as the Q is varied.Using Probe, we can observe how the ringing varies as the resistance changes. Figure 6 shows the input pulse and the voltage across the capacitor C1. Comparing the four output waveforms, we

24、can see the most pronounced ringing occurs when the resistor has the lowest value and the Q is greatest. Any signal source can be used to drive the voltage-controlled resistance. If we had used a sinusoidal control source instead of a staircase, the resistance would have varied dynamically during the simulation.附件D 变压器PSpice模型等效电路变压器模型*Transformer Subcircuit Parameters *RATIO = Turns ratio= Secondary/Primary

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1