1、博弈论习题及解答第一章绪论 1.21. 什么是博弈论?博弈有哪些基本表示方法?各种表示法的基本要素是什么?(见教材) 2. 分别用规范式和扩展式表示下面的博弈。 两个相互竞争的企业考虑同时推出一种相似的产品。如果两家企业都推出这种产品,那么他们每家将获得利润400万元;如果只有一家企业推出新产品,那么它将获得利润700万元,没有推出新产品的企业亏损600万元;如果两家企业都不推出该产品,则每家企业获得200万元的利润。 企业B推出 不推出 企业A推出 (400,400)(700,-600)不推出 (-600,700)(-500,-500)3. 什么是特征函数? (见教材) 4. 产生“囚犯困境
2、”的原因是什么?你能否举出现实经济活动中囚徒困境的例子? 原因:个体理性与集体理性的矛盾。 例子:厂商之间的价格战,广告竞争等。第二章完全信息的静态博弈和纳什均衡 1. 什么是纳什均衡? (见教材) 2. 剔除以下规范式博弈中的严格劣策略,再求出纯策略纳什均衡。 先剔除甲的严格劣策略3,再剔除乙的严格劣策略2,得如下矩阵博弈。然后用划线法求出该矩阵博弈的纯策略Nash均衡。 乙 甲 1312,04,223,42,33. 求出下面博弈的纳什均衡。 乙 LR甲 U5,00,8D2,64,5由划线法易知,该矩阵博弈没有纯策略Nash均衡。 由表达式(2.3.13)(2.3.16)可得如下不等式组 Q
3、=a+d-b-c=7,q=d-b=4,R=0+5-8-6=-9,r=-1将这些数据代入(2.3.19)和(2.3.22),可得混合策略Nash均衡(),()4. 用图解法求矩阵博弈的解。 解:设局中人1采用混合策略(x,1-x),其中x0,1,于是有:,其中 F(x)=minx+3(1-x),-x+5(1-x),3x-3(1-x) 令z=x+3(1-x),z=-x+5(1-x),z=3x-3(1-x) 作出三条直线,如下图,图中粗的折线,就是F(x)的图象 由图可知,纳什均衡点与1无关,所以原问题化为新的2*2矩阵博弈:由公式计算得:。 所以该博弈的纳什均衡点为(2/3,1/3),(0,1/2
4、,1/2),博弈的值为1。 5. 用线性规划法求矩阵博弈的解。 将矩阵中的所有元素都加4,得将数据代入(2.4.34)和(2.4.35)可得局中人1的混合策略,(0.45,0.24,0.31), 将数据代入(2.4.36)和(2.4.37)可得局中人2的混合策略,(0.31,0.24,0.45)6. 某产品市场上有两个厂商,各自都可以选择高质量,还是低质量。相应的利润由如下得益矩阵给出: (1) 该博弈是否存在纳什均衡?如果存在的话,哪些结果是纳什均衡?由划线法可知,该矩阵博弈有两个纯策略Nash均衡,即(低质量, 高质量), (高质量,低质量)。 乙企业 高质量 低质量 甲企业 高质量 50
5、,50100,800低质量 900,600-20,-30该矩阵博弈还有一个混合的纳什均衡 Q=a+d-b-c= -970,q=d-b= -120,R= -1380,r= -630,可得? 因此该问题的混合纳什均衡为。 (2) 如果各企业的经营者都是保守的,井都采用最大最小化策略,结果如何?乙企业 高质量 低质量 甲企业 高质量 50,50100,800低质量 900,600-20,-30(高质量, 高质量),(低质量,低质量)。 7. 甲、乙两人就如何分100元钱进行讨价还价。假设确定了以下规则:双方同时提出自己要求的数额s1和s2,0s1,s2100。如果s1+s2100,则两人各自得到自己
6、所提出的数额;如果s1+s2100,双方均获得0元。试求出该博弈的纳什均衡。 该博弈的纳什均衡为下图的线段AB:即:s1+s2=100,s1,s20,100。 8. 假设古诺寡头垄断模型中有n个企业,令qi表示企业i的产量,且 Q=q1+qn表示市场总产量,p表示市场出清价格,并假设逆需求函数由p(Q)=a-Q给出(设Qa,其它情况下p=0)。并设企业i生产产量qi的总成本 Ci(qi)=cqi,这里c是常数,并假设c10。此时乙企业的收益为100+a。 11. 假设有一博弈G=N,S,P,其中N=1,2,S1=10,20,S2=0,15,,。试求出最优反应函数,并求出均衡点。 解:令,,得最
7、优反应函数:由此进一步可求得,它们在题设要求的可行域内,所以均衡点为(330/23,80/23)。 12. 证明教材中定理2.4.6。 证明:设矩阵博弈G1的纳什均衡为(X*,Y*),其中X*=(x1,x2,xm),Y*=(y1,y2,yn),由纳什均衡的定义,有,即。由于d是常数,因此有。显然不等式是成立的,此即为。所以(X*,Y*)是矩阵博弈G2的纳什均衡点,并且 第三章纳什均衡的扩展与精炼 1. 什么是完全信息和不完全信息?什么是完美信息和不完美信息?在海萨尼转换中,自然对局中人类型的确定都是有限的吗?举例说明。(见教材)2. 什么是重复博弈中的策略?什么是一个重复博弈中的子博弈?什么是
8、一个子博弈完美纳什均衡? (见教材)3. 以下(虚线框中的)子博弈的划分是否正确?答:两个扩展式中的子博弈划分均不正确,图1中的划分对同一信息集产生了分割,图2中的子博弈不是开始于单节信息集的决策结点。 4. 在双寡头古诺模型中,设逆需求函数为p=a-Q,其中Q=q1+q2为市场总需求,但a有aH和aL两种可能的情况,并且企业1知道a究竟是aH还是aL,而企业2只知道a=aH和a=aL的概率分别是和1-,该信息是双方都知道的。双方的总成本函数分别是cq1和cq2。如果两企业同时选择产量,双方的策略空间是什么?试计算出贝叶斯纳什均衡。 假设企业2的产量为q2,企业1将选择q1最大化利润函数(这里
9、a取aH或aL)由此得:企业2将选择q2最大化它的期望利润由此得: 在均衡时,q1,q2应满足由此得:企业1的策略为:企业2的策略为:因此博弈的贝叶斯纳什均衡是:当a=aH时,企业1生产;当a=aL时,企业1生产,企业2生产。5. 在下面的静态贝叶斯博弈中,求出所有的纯策略贝叶斯纳什均衡。 (1) 自然决定收益情况是由博弈1给出,还是由博弈2给出,选择每一博弈的概率相等; (2) 局中人1了解到自然选择了博弈1,还是选择了博弈2,但局中人2不知道; (3) 局中人1选择行动T或B,同时局中人2选择行动L或R; (4) 根据自然选择的博弈,两局中人得到相应的收益。 LRLRT1,10,0T0,0
10、0,0B0,00,0B0,02,2博弈1 博弈2自然选择了博弈1时,局中人1选择T,自然选择了博弈2时,局中人1选择B。 局中人2的策略是根据期望收益最大的原则确定。 局中人2的选择策略L的期望收益为0.51+0.50=0.5,选择策略R的期望收益为0.50+0.52=1,因此局中人2会选择策略R。 该博弈的纯策略贝叶斯纳什均衡为:自然选择博弈1时,局中人1选择T,自然选择博弈2时,局中人1选择B;局中人2会选择策略R。 6. 在一个由三寡头操纵的垄断市场中,逆需求函数为p=a-q1-q2-q3,这里qi是企业i的产量。每一企业生产的单位成本为常数c。三企业决定各自产量的顺序如下:(1)企业1
11、首先选择q10;(2)企业2和企业3观察到q1,然后同时分别选择q2和q3。试解出该博弈的子博弈完美纳什均衡。 答:该博弈分为两个阶段,第一阶段企业1选择产量q1,第二阶段企业2和3观测到q1后,他们之间作一完全信息的静态博弈。我们按照逆向递归法对博弈进行求解。 (1)假设企业1已选定产量q1,先进行第二阶段的计算。设企业2,3的利润函数分别为: 由于两企业均要追求利润最大,故对以上两式分别求一阶条件: (1) (2) 求解(1)、(2)组成的方程组有: (3) (2)现进行第一阶段的博弈分析: 对与企业1,其利润函数为; 将(3)代入可得: (4) 式(4)对q1求导: 解得: (5) 此时
12、,(3)将式(5)代回(3)和(4)有该博弈的子博弈完美纳什均衡: ,7. 如果将如下的囚徒困境博弈重复进行无穷次,惩罚机制为触发策略,贴现因子为。试问应满足什么条件,才存在子博弈完美纳什均衡? 乙 甲 坦白 不坦白 坦白 4,40,5不坦白 5,01,1由划线法求得该博弈的纯策略纳什均衡点为(不坦白,不坦白),均衡结果为(1,1),采用触发策略,局中人i的策略组合s的最好反应支付=5,Pi(s*)=4,Pi(sc)=1。若存在子博弈完美纳什均衡,必须满足:,即只有当贴现因子1/4时,才存在子博弈完美纳什均衡。 8. 假设有一博弈G=N,S,P,其中N=1,2,S1=0,50,S2=0,50,
13、,,i=1,2。(1)求纳什均衡点;(2)在纳什均衡下的最优反应函数;(3)若该博弈重复无限次,是否存在触发策略构成的子博弈完美纳什均衡,其条件是什么? 解:局中人1,2的最优反应函数分别为: s1=5+1/2s2 s2=20/3+1/3s1由此得唯一的纯策略纳什均衡点:sc=(10,10).相应的有P(sc)=(1000,1500).容易求得s*=(35,30),相应的有P(s*)=(1750,3000),.当时,存在触发策略构成的子博弈完美纳什均衡(s*,sc)9. 求如图所示完全信息动态博弈的子博弈完美纳什均衡(图中数字(a,b,c)分别表示局中人1、2、3的收益)。 答:局中人1采取A
14、2行动,局中人2采取行动B1时,局中人3必然采取C2行动(因为32),因而该博弈的顶点只能是(2,1,9)。进而原博弈简化为: 这时,假设局中人1采取行动A1,对于左边一个子博弈,局中人3必定采取行动C2(31),因而在该子博弈顶点的结果只会是(7,6,6).进而,该博弈又简化为: 这时,局中人1必然选择行动A2(1max0,s-c1,即Pmax(c1+c2)/r, (s+c2)/r时原告的诉讼威胁是可信的。 11. 在伯川德模型中,假定有n个生产企业,需求函数为(b0),其中pi是企业i的定价,qi是企业i的需求量。假设企业生产没有固定成本,并且边际成本为常数c,ca.假定博弃重复无穷多次,
15、每次的价格都立即被观察到,企业使用触发策略。求使垄断价格可以作为完美均衡结果出现的最低贴现因子,并解释与n的关系。 分以下几个步骤进行。 1)计算纳什均衡 当企业i选择价格pi,其它企业选择价格pj(j=1,2,n,ji)时,企业i的利润为:,i=1,2,n 价格组合()若是纳什均衡,则对每个企业i,应是如下最优问题的解:求解该问题,得; i=1,2,.,n解该方程组,得:,i=1,2,n企业i的利润为:2) 计算垄断情况下的价格 若n家企业合并为一家,即形成垄断价格,则n家企业的价格相同,即p1=p2=pn. 可求得总利润最大时的价格为:那么每个企业的利润为(这里(n-1)b1)易证,即在垄
16、断价格下,各企业的利润增加了。 3) 计算使垄断价格可以作为完美均衡结果出现的最低贴现因子,并解释与n的关系。 当时,触发策略(p*,pc) 是子博弈完美纳什均衡.12. 有一在位企业生产某种产品,其成本可能低,也可能高。该企业可以选择低价或高价两种策略。另一企业准备进入生产同类产品,但完全不知道在位企业的生产成本是高还是低,只能观察到其价格是低价还是高价。其具体收益见下面博弈的扩展式表述。求该博弈的子博弈完美贝叶斯纳什均衡。 该题的求解与第115页例题类似。13.求例3.4.1的子博弈完美贝叶斯纳什均衡。第四章 谈判与协调 1. 帕累托占优均衡和纳什均衡的关系是什么?纳什均衡的基本思想是:每
17、一个局中人选择一个策略,由所有局中人的策略构成了一个策略组合;在其它局中人选定策略不变的情况下,若某一个局中人单独地违背自己已选的策略,那么他的收益只会下降(或收益不会增加)。这样的策略组合构成一个均衡局势,并命名为纳什均衡。纳什均衡有纯策略的纳什均衡和混合策略的纳什均衡。一个博弈中有不止一个纳什均衡时,就构成一个多重纳什均衡问题。在多重纳什均衡下给出一些选择标准就得到一些特定的纳什均衡。其中帕累托占有纳什均衡是根据这样的选择标准选择的均衡。在博弈中,若均为G的其纳什均衡,若满足 , 则称为博弈G的帕累托占优纳什均衡。可见帕累托占有纳什均衡是纳什均衡中收益最大的一种均衡。 2. 分别找出具有下
18、列性质的2人博弈的例子。 (1) 不存在纯策略纳什均衡; (2) 至少有两个纳什均衡,并且其中之一是帕累托占优均衡。 (1)不存在纯策略的纳什均衡: 该博弈不存在纯策略的纳什均衡 (2) 战争 和平 国 家 1战争 -5,-58,-10和平 -10,810,10 该博弈有三个纳什均衡:(战争,战争)、(和平,和平)和一个混合策略纳什均衡。很显然,(和平,和平)是一个帕累托占优纳什均衡。 3. 假设在某一产品市场上有两个寡头垄断企业,它们的成本函数分别为: TC1=0.1q+20q1+100000 TC2=0.4q+32q2+20000这两个企业生产一同质产品,其市场需求函数为:Q=4000-1
19、0p。试分别基于古诺模型和纳什谈判模型求解两企业的利润。 解:由和得 所以: 求解方程组得 将,代入到,中去得到最优解4. 你能否对如下的CG-22博弈中x的变化设计出一些实验方案,来讨论是帕累托占优思想还是风险占优思想在策略选择中起主要作用。 局中人B12局中人A1800,800x,020,x1000,1000设计试验 (1) ax1000 这时是帕累托占优思想起主要作用。都会选择行动2。 第五章合作博弈 1. 设三人联盟博弈的特征函数v的值是:v(i)=0,i=1,2,3;v(1,2)=2/3,v(1,3)=7/12,v(2,3)=1/2, v(1,2,3)=1。求出该联盟博弈的核心,并用
20、图形表示出来。 2. 假设有一3人合作博弈,其特征函数为:v(1, 2, 3)=200,v(1,2)=150,v(1,3)=110,v(2,3)=20,v(1)=100,v(2)=10,v(3)=0。计算该合作博弈的Shapley值,核心,最小-核心,稳定集,内核和核仁。 3. 考虑有如下特征函数v的4人合作博弈: v(1,2, 3, 4)=2,v(1, 2, 3)= 1, v(1, 2, 4)=2, v(1, 3, 4)=0, v(2, 3, 4)=1,v(1, 2)=0, v(1,3)=-1, v(1,4)=1,v(2,3)=0,v(2,4)=1,v(3,4)=0,v(1)=-1,v(2)
21、=0,v(3)=-1,v(4)=0. 4. 证明下面的10人博弈v不具有稳定集。 设N=1,2,10,N上博弈v的特征函数为:v(N)=5,v(1,3,5,7,9)=4,v(3,5,7,9)=v(1,5,7,9)=v(1,3,7,9)=3,v(1,4,7,9)=v(3,6,7,9)=v(2,5,7,9)=2,v(3,5,7)=v(1,5,7)=v(1,3,7)=2,v(3,5,9)=v(1,3,9)=v(1,5,9)=2,v(1,2)=v(3,4)=v(5,6)=v(7,8)=v(9,10)=1,v(i)=0,iN,v(S)=0,对任意其它的联盟SN。 5. 五个人(分别用1,2,3,4,5表示)拟合伙开公司,经测算,一年可获利润100万。你认为应如何分配?试用合作博弈的方法给出此问题的分配方案。 S v(S)Sv(S)Sv(S)Sv(S)123451,21,31,400051005151,52,32,42,53,43,54,51,2,320152530303545251,2,41,2,51,3,41,3.51,4,52,3,42,3,52,4,535404045555055653,4,51,2,3,41,2,3,51,2,4,51,3,4,
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1