ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:25.92KB ,
资源ID:10577671      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10577671.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(鸡兔同笼数学题.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

鸡兔同笼数学题.docx

1、鸡兔同笼数学题鸡兔同笼2、四年级和六年级学生共120人给小树浇水.其中六年级学生1人提2桶水,四年级学生2人抬一桶水,他们一次浇水共180桶.四年级和六年级参加浇水的各有多少人?3.鸡兔同笼,上有头20个,下有脚48只.求鸡兔各多少只?1、 大小两辆汽车共同运216吨货物,小汽车运了7小时,大汽车运了8小时,已知小汽车5小时运的数量等于大汽车2小时运的数量,则大汽车每小时运多少吨?2、 笼子里有鸡兔共27只,兔脚比鸡脚多18只,问:有鸡兔各多少只?3、有182只兔子,把它们分别装在甲乙两种笼子里,甲种笼子每笼装6只,乙种笼子每笼装4只,两种笼子正好用36个,问:两种笼子个多少个?4、一个大人一

2、餐吃2个面包,两个小孩一餐吃1个面包,现在有大人和小孩共99人,一餐刚好吃了99个面包,大人、小孩各有多少人?5、四年级共有52位同学参加植树,男生每人种3棵,女生每人种2棵,已知男生比女生多种36棵,求:有多少名男生?6、有面值分别为2元、5元、10元的邮票共34张,价值共计178元。其中5元与10元的邮票张数相等,问:各种面值的邮票各有多少张? 7、公园门票出售5元、8元、10元共100张,收入748元,其中5元和8元的张数相等。各种票售出多少张?8、犀牛、鹿、鸵鸟三种动物共有26个头,80只脚,20只角。犀牛有4只脚,1只角;鹿有4只脚,2只角,鸵鸟有2只脚。三种动物分别有多少只?1、鸡

3、兔同笼,共100个头,320只脚,鸡有( )只、兔( )只。 2、小明计算20道竞赛题,做对一道得5分,做错一道倒扣3分。结果小明考得60分,小明做对了( )道题。3、松鼠妈妈采松子。晴天每天可以采20个,雨天每天可以采12个。它一连几天采了112个松子,平均每天采14个。这几天中有( )天下雨。4、个体户王小二承接了建筑公司一项运输1200块玻璃的业务,并签了合同。合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了扣除一块的运费外,还要赔偿25元。王小二把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元。运输过程中损坏了( )块。5、100名师生绿化校园,老

4、师每人栽3棵树,学生每2人栽1棵,总共栽树100棵。老师栽树( )棵,学生栽树( )棵。6、30枚硬币由2分和5分组成,共值9角9分,2分硬币( )枚,5分硬币( )枚。7、某校数学竞赛,共有20道填空题。评分标准是每做对一题得5分,做错一题倒扣3分,某题没做该题得0分。小英结果得了69分,那小英有( )题没做。8、蜘蛛有8只脚,蜻蜓有6只脚和2对翅膀,蝉有6只脚和1对翅膀。现在这三种昆虫18只,共有118只脚和20对翅膀。蜘蛛有( )只,蜻蜓有( )只,蝉有( )只。9、甲、乙两人进行射击比赛,约定每中一发记20分,脱靶一发扣12分,两人各打10发,共得208分,其中甲比乙多64分,甲中了(

5、 )发,乙中了( )发。10、鸡、兔共有脚96只,若将鸡、兔互换,则有脚84只,鸡有( )只,兔有( )只。鸡兔同笼问题讲解及习题鸡兔同笼 一、基本问题 “鸡兔同笼”是一类有名的中国古算题.最早出现在孙子算经中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法-“假设法”来求解.因此很有必要学会它的解法和思路. 例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只? 解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是 2442=122(只). 在122这个数里,鸡的头数算了一次,兔

6、子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数 122-88=34, 有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只. 上面的计算,可以归结为下面算式: 总脚数2-总头数=兔子数. 上面的解法是孙子算经中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法. 还说例1. 如果设想88只都是兔子,那么就有488只脚,比244只脚多了 884-244=108(只). 每只鸡比

7、兔子少(4-2)只脚,所以共有鸡 (884-244)(4-2)= 54(只). 说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式 鸡数=(兔脚数总头数-总脚数)(兔脚数-鸡脚数). 当然,我们也可以设想88只都是“鸡”,那么共有脚288=176(只),比244只脚少了 244-176=68(只). 每只鸡比每只兔子少(4-2)只脚, 682=34(只). 说明设想中的“鸡”,有34只是兔子,也可以列出公式 兔数=(总脚数-鸡脚数总头数)(兔脚数-鸡脚数). 上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数. 假设全是鸡,或者全是兔,通常用

8、这样的思路求解,有人称为“假设法”. 现在,拿一个具体问题来试试上面的公式. 例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支? 解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚. 现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有 蓝笔数=(1916-280)(19-11) =248 =3(支). 红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔. 对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30

9、.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是 8(11+19)=240. 比280少40. 40(19-11)=5. 就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3. 308比1916或1116要容易计算些.利用已知数的特殊性,靠心算来完成计算. 实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数 1910+116=256. 比280少24. 24(19-11)=3, 就知道设想6只“鸡”,要少3只. 要使设想的数,能给计算带来方便,常常取决于你的心算本领. 下面再举四个稍有难度的例子. 例3 一

10、份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时? 解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打306=5(份),乙每小时打3010=3(份). 现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡”头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了. 根据前面的公式 “兔”数=(30-37)(5-3) =4.5, “鸡”数=7-4.5 =2.5, 也就是甲打字用了4.5小时,乙打字用了2.5小时. 答:甲打字用了4小时30分.

11、 例4 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年? 解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是 (254-86)(4-3)=14(岁). 1998年,兄年龄是 14-4=10(岁). 父年龄是 (25-14)4-4=40(岁). 因此,当父的年龄是兄的年龄的3倍时,兄的年龄是 (40-

12、10)(3-1)=15(岁). 这是2003年. 答:公元2003年时,父年龄是兄年龄的3倍.例5蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成8条腿与6条腿两种。利用公式就可以算出8条腿的蜘蛛数=(118-618)(8-6)=5(只).因此就知道6条腿的小虫共18-5=13(只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀。再利用一次公式蝉数=(132-20)(2-1)=6(只).因此蜻蜓数是13-6=7(只).答:有5只蜘蛛,7只蜻蜓,6只蝉。例6

13、某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?解:对2道,3道,4道题的人共有52-7-6=39(人).他们共做对181-17-56=144(道).由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)2=2.5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39.对4道题的有(144-2.539)(4-2.5)=31(人).答:做对4道题的有31人。以例1为例 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?以

14、简单的X方程计算的话,我们一般用设大数为X,那么也就是设兔为X,那么鸡的只数就是总数减去鸡的只数,即(88-X)只。解:设兔为X只。则鸡为(88-X)只。4X+2(88-X)=244上列的方程解释为:兔子的脚数加上鸡的脚数,就是共有的脚数。4X就是兔子的脚数,2(88-X)就是鸡的脚数。4X+288-2X=2442X+176=2442X+176-176=244-1762X=682X2=682X=34即兔子为34只,总数是88只,则鸡:88-34=54只。答:兔子有34只,鸡有54只。公式1:(兔的脚数总只数总脚数)(兔的脚数鸡的脚数)=鸡的只数总只数鸡的只数=兔的只数公式2:( 总脚数鸡的脚数

15、总只数)(兔的脚数鸡的脚数)=兔的只数总只数兔的只数=鸡的只数公式3:总脚数2总头数=兔的只数总只数兔的只数=鸡的只数公式4:鸡的只数=(4鸡兔总只数-鸡兔总脚数)2 兔的只数=鸡兔总只数-鸡的只数公式5:兔总只数=(鸡兔总脚数-2鸡兔总只数)2 鸡的只数=鸡兔总只数-兔总只数公式6 :4+2(总数x)=总脚数 (x=兔,总数x=鸡数,用于方程)假设法 假设全是鸡:235=70(只)鸡脚比总脚数少:9470=24 (只)兔子比鸡多的脚数:4-2=2(只)兔子的只数:242=12 (只)鸡的只数:3512=23(只)方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。解得 鸡:35-12=2

16、3(只)解:设鸡有x只,则兔有(35-x)只。解得 兔:35-23=12(只)答:兔子有12只,鸡有23只。注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。二元一次方程组 解:设鸡有x只,兔有y只。解得 答:兔子有12只,鸡有23只。抬腿法方法一假如让鸡抬起一只脚,兔子抬起2只脚,还有942=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。方法二假如鸡与兔子都抬起两只脚,还剩下94352=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有242=12只兔子,就有3512

17、=23只鸡。方法三我们可以先让兔子都抬起2只脚,那么就有352=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用242得到兔子有12只,用35-12得到鸡有23只。鸡兔同笼公式解法1:(兔的脚数总只数总脚数)(兔的脚数鸡的脚数)=鸡的只数总只数鸡的只数=兔的只数解法2:( 总脚数鸡的脚数总只数)(兔的脚数鸡的脚数)=兔的只数总只数兔的只数=鸡的只数解法3:总脚数2总头数=兔的只数总只数兔的只数=鸡的只数例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析 如果 46只都是兔,一共应有 446=184只脚,这和已知的128只脚相比多了184

18、-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,562=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。解:鸡有多少只?(46-128)(4-2)=(184-128)2=562=28(只)免有多少只?46-28=18(只)答:鸡有28只,免有18只。我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共

19、有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数 兔总数- 实际脚数)(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有1206=20(只).有鸡(100-20)=80(只)。解:(2100-80)(2+4)=20(只)。100-20=80(只)。答:鸡与兔分别有80只和20只。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1