英文数学论文.docx

上传人:b****7 文档编号:9977352 上传时间:2023-02-07 格式:DOCX 页数:13 大小:24.12KB
下载 相关 举报
英文数学论文.docx_第1页
第1页 / 共13页
英文数学论文.docx_第2页
第2页 / 共13页
英文数学论文.docx_第3页
第3页 / 共13页
英文数学论文.docx_第4页
第4页 / 共13页
英文数学论文.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

英文数学论文.docx

《英文数学论文.docx》由会员分享,可在线阅读,更多相关《英文数学论文.docx(13页珍藏版)》请在冰豆网上搜索。

英文数学论文.docx

英文数学论文

ThispaperisconcernedwiththeCauchyproblemofnonlinearwaveequationswithpotential,strong,andnonlineardampingterms.Firstly,byusingvariationalcalculusandcompactnesslemma,theexistenceofstandingwavesofthegroundstatesisobtained.Thentheinstabilityofthestandingwaveisshownbyapplyingpotential-wellargumentsandconcavitymethods.Finally,weshowhowsmalltheinitialdataarefortheglobalsolutionstoexist.

Keywords:

 

waveequations;nonlineardampingterms;strongdampingterms;globalexistence;blow-up

Introduction

ConsidertheCauchyproblemfornonlinearwaveequationswithpotential,strong,andnonlineardampingterms,

{utt−Δu−ωΔut+V(x)u+|ut|m−2ut=|u|p−2u,u(0,x)=u0,ut(0,x)=u1,in [0,T)×Rn,in Rn,

(1)

where p>2, m≥2, T>0, ω>0,

u0∈H1(Rn),u1∈L2(Rn),

(2)

and

22,for n≤2.(3)

Withtheabsenceofthestrongdampingterm Δut,andthedampingterm ut (see [1]),(1.1)canbeviewedasaninteractionbetweenoneormorediscreteoscillatorsandafieldorcontinuousmedium [2].

Forthecaseoflineardamping( ω=0, m=2)andnonlinearsources,Levine [3]showedthatthesolutionsto(1.1)withnegativeinitialenergyblow-upfortheabstractversion.Forthenonlineardampingandsourceterms( ω=0, m>2, p>2, V(x)=0),theabstractversionhasbeenconsideredbymanyresearchers [4]–[12].Forinstance,GeorgievandTodorova [4]provethatif m≥p,aglobalweaksolutionexistsforanyinitialdata,whileif 20, m=2, V(x)=0)andnonlinearsourceterms( p>2)hasbeenstudiedbyGazzolaandSquassinain [1].Theyprovetheglobalexistenceofsolutionswithinitialdatainthepotentialwellandshowthateveryglobalsolutionisuniformlyboundedinthenaturalphasespace.Moreover,theyprovefinitetimeblow-upforsolutionswithhighenergyinitialdata.However,theydonotconsiderthecaseofanonlineardampingterm( ω>0, m>2, p>2).

Tothebestofourknowledge,littleworkhasbeencarriedoutontheexistenceandinstabilityofthestandingwavefor(1.1).Inthispaper,westudytheexistenceofastandingwavewithgroundstate(ω=1),whichistheminimalactionsolutionofthefollowingellipticequation:

−Δϕ+V(x)ϕ=|ϕ|p−2ϕ.(4)

Basedonthecharacterizationofthegroundstateandthelocalwell-posednesstheory[7],weinvestigatetheinstabilityofthestandingwavefortheCauchyproblem(1.1).Finally,wederiveasufficientconditionofglobalexistenceofsolutionstotheCauchyproblem(1.1)byusingtherelationbetweeninitialdataandthegroundstatesolutionof(1.4).Itshouldbepointedoutthattheseresultsinthepresentpaperareunknownto(1.1)before.

Forsimplicity,throughoutthispaperwedenote ∫Rn⋅dx by ∫⋅dx andarbitrarypositiveconstantsby C.

Preliminariesandstatementofmainresults

Wedefinetheenergyspace Hinthecourseofnatureas

H:

={φ∈H1(Rn),∫V(x)|φ|dx<∞}.(5)

Byitsdefinition, H isaHilbertspace,continuouslyembeddedin H1(Rn),whenendowedwiththeinnerproductasfollows:

⟨φ,ϕ⟩H:

=∫(∇φ∇ϕ¯+V(x)φϕ¯)dx,(6)

whoseassociatednormisdenotedby ∥⋅∥H.If φ∈H,then

∥φ∥H=(∫|∇φ|2dx+∫V(x)|φ|2dx)12.(7)

Throughoutthispaper,wemakethefollowingassumptionson V(x):

⎧⎩⎨⎪⎪⎪⎪infx∈RnV(x)=V¯(x)>0,V(x) isa C1 boundedmeasurablefunctionon Rn,limx→∞V(x)=∞.(8)

Accordingto [1]and [7],wehavethefollowinglocalwell-posednessfortheCauchyproblem(1.1).

Proposition2.1

If (1.2) and (1.3) hold, thenthereexistsauniquesolutionu(t,x)oftheCauchyproblem (1.1) onamaximaltimeinterval[0,T), forsomeT∈(0,∞) (maximalexistencetime) suchthat

u(t,x)∈C([0,T);H1(Rn))∩C1([0,T);L2(Rn))∩C2([0,T);H−1(Rn)),ut(t,x)∈C([0,T);H1(Rn))∩Lm([0,T)×Rn),(9)

andeither T=∞or T<∞and limt→T−∥u∥H1=∞.

Remark2.2

FromProposition 2.1,itfollowsthat m=p isthecriticalcase,namelyfor p≤m,aweaksolutionexistsgloballyintimeforanycompactlysupportedinitialdata;whilefor m

Wedefinethefunctionals

S(ϕ):

=12∫|∇ϕ|2dx+12∫V(x)|ϕ|2dx−1p∫|ϕ|pdx,(10)

R(ϕ):

=∫|∇ϕ|2dx+∫V(x)|ϕ|2dx−∫|ϕ|pdx,(11)

for ϕ∈H1(Rn),andwedefinetheset

M:

={ϕ∈H1∖{0};R(ϕ)=0}.(12)

Weconsidertheconstrainedvariationalproblem

dM:

=inf{supλ≥0S(λϕ):

R(ϕ)<0,ϕ∈H1∖{0}}.(13)

FortheCauchyproblem(1.1),wedefineunstableandstablesets, K1and K2,asfollows:

K1≡{ϕ∈H1(Rn)∣R(ϕ)<0,S(ϕ)0,S(ϕ)

Themainresultsofthispaperarethefollowing.

Theorem2.3

Thereexists Q∈Msuchthat

(a1) S(Q)=infMS(ϕ)=dM;

(a2) Qisagroundstatesolutionof (1.4).

FromTheorem 2.3,wehavethefollowing.

Lemma2.4

LetQ(x)bethegroundstateof (1.4). If (1.3) holds, then

S(Q)=minMS(ϕ).(15)

Theorem2.5

Assumethat (1.2)-(1.3) holdandtheinitialenergyE(0)satisfies

E(0)=<12∫|u1|2dx+12(∫|∇u0|2dx+∫V(x)|u0|2dx)−1p∫|u0|pdxp−22p(∫|∇Q|2dx+∫V(x)|Q|2dx).(16)

(b1) If 2

(b2) If2

∥ut∥22+p−2p(∫|∇u0|2dx+∫V(x)|u0|2dx)

Variationalcharacterizationofthegroundstate

Inthissection,weproveTheorem 2.3.

Lemma3.1

Theconstrainedvariationalproblem

dM:

=inf{supλ≥0S(λϕ):

R(ϕ)<0,ϕ∈H1∖{0}},(18)

isequivalentto

d1:

=inf{supλ≥0S(λϕ):

R(ϕ)=0,ϕ∈H1∖{0}}=infϕ∈MS(ϕ),(19)

and dMprovided 2

Proof

Let ϕ∈H1.Since

S(λϕ)=λ22(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)−λpp∫|ϕ|pdx,(20)

itfollowsthat

ddλS(λϕ)=λ(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)−λp−1∫|ϕ|pdx.(21)

Thusby 2≤m

supλ≥0S(λϕ)=S(λ1ϕ)=λ21(12∫|∇ϕ|2dx+12∫V(x)|ϕ|2dx−λp−21p∫|ϕ|pdx),(22)

where λ1 uniquelydependson ϕ andsatisfies

∫|∇ϕ|2dx+∫V(x)|ϕ|2dx−λp−21∫|ϕ|pdx=0.(23)

Since

d2dλ2S(λϕ)=∫|∇ϕ|2dx+∫V(x)|ϕ|2dx−pλp−2∫|ϕ|pdx,(24)

whichtogetherwith p>2 and(3.6)impliesthat d2dλ2S(λϕ)|λ=λ1<0,wehave

supλ≥0S(λϕ)=p−22p(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)pp−2(∫|ϕ|pdx)2p−2.(25)

Therefore,theaboveestimatesleadto

dM==inf{supλ≥0S(λϕ):

R(ϕ)<0,ϕ∈H1∖{0}}inf{p−22p(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)pp−2(∫|ϕ|pdx)2p−2:

R(ϕ)<0}.(26)

Itiseasytoseethat

d1==inf{supλ≥0S(λϕ):

R(ϕ)=0,ϕ∈H1∖{0}}infϕ∈M{p−22p(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)}.(27)

From(2.3)-(2.5),on M onehas

S(ϕ)=p−22p(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx).(28)

Itfollowsthat d1=infϕ∈MS(ϕ) and S(ϕ)>0 on M.

Nextweestablishtheequivalenceofthetwominimizationproblems(3.1)and(3.2).

Forany ϕ0∈H1and R(ϕ0)<0,let ϕβ(x)=βϕ0.Thereexistsa β0∈(0,1)suchthat R(ϕβ0)=0,andfrom(3.8)weget

supλ≥0S(λϕβ0)===p−22p(∫|∇ϕβ0|2dx+∫V(x)|ϕβ0|2dx)pp−2(∫|ϕβ0|pdx)2p−2p−22pβ2pp−20(∫|∇ϕ0|2dx+∫V(x)|ϕ0|2dx)pp−2β2pp−20(∫|ϕ0|pdx)2p−2p−22p(∫|∇ϕ0|2dx+∫V(x)|ϕ0|2dx)pp−2(∫|ϕ0|pdx)2p−2.(29)

Consequentlythetwominimizationproblems(3.8)and(3.9)areequivalent,thatis,(3.1)and(3.2)areequivalent.

Finally,weprove dM>0byshowing d1>0intermsoftheaboveequivalence.Since 2

∫|ϕ|pdx≤C(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)p2.(30)

From R(ϕ)=0,itfollowsthat

∫|∇ϕ|2dx+∫V(x)|ϕ|2dx=∫|ϕ|pdx≤C(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)p2,(31)

whichtogetherwith p>2 implies

∫|∇ϕ|2dx+∫V(x)|ϕ|2dx≥C>0.(32)

Therefore,from(3.10),weget

S(ϕ)≥C>0,ϕ∈M.(33)

Thusfromtheequivalenceofthetwominimizationproblems(3.1)and(3.2)oneconcludesthat dM>0 for 2

ThiscompletestheproofofLemma 3.1. □

Proposition3.2

SisboundedbelowonMand dM>0.

Proof

From(2.3)-(2.6),on Monehas

S(ϕ)=p−22p(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx).(34)

Itfollowsthat S(ϕ)>0 on M.So S isboundedbelowon M.From(2.6)wehavedM>0. □

Proposition3.3

Letϕλ(x)=λϕ(x), forϕ∈H1∖{0}andλ>0. Thenthereexistsauniqueμ>0 (dependingonϕ) suchthatR(ϕμ)=0. Moreover,

R(ϕλ)>0,for λ∈(0,μ);R(ϕλ)<0,for λ∈(μ,∞);(35)

and

S(ϕμ)≥S(ϕλ),∀λ>0.(36)

Proof

By(2.3)and(2.4),wehave

S(ϕλ)=λ22(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)−λpp∫|ϕ|pdx,R(ϕλ)=λ2(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)−λp∫|ϕ|pdx.(37)

Fromthedefinitionof M,thereexistsaunique μ>0 suchthat R(ϕμ)=0.Moreover,

R(ϕλ)>0,for λ∈(0,μ);R(ϕλ)<0,for λ∈(μ,∞).(38)

Since

ddλS(ϕλ)=λ−1R(ϕλ),(39)

and R(ϕμ)=0,wehave S(ϕμ)≥S(ϕλ), ∀λ>0. □

Next,wesolvethevariationalproblem(2.6).

Wefirstgiveacompactnesslemmain [8].

Lemma3.4

Let 1≤p

Inthefollowing,weproveTheorem 2.3.

ProofofTheorem 2.3

AccordingtoProposition 3.2,welet {ϕn,n∈N}⊂Mbeaminimizingsequencefor(2.6),thatis,

R(ϕn)=0,S(ϕn)→dM.(40)

From(3.15)and(3.16),weknow ∥∇ϕn∥22 isboundedforall n∈N.Thenthereexistsasubsequence {ϕnk,k∈N}⊂{ϕn,n∈N},suchthat

{ϕnk}⇀ϕ∞weaklyin H1.(41)

Forsimplicity,westilldenote {ϕnk,k∈N} by {ϕn,n∈N}.Sowehave

ϕn⇀ϕ∞weaklyin H1.(42)

ByLemma 3.4,wehave

ϕn→ϕ∞stronglyin L2(Rn),(43)

ϕn→ϕ∞stronglyin Lp(Rn).(44)

Next,weprovethat ϕ∞≠0 bycontradiction.If ϕ∞≡0,from(3.18)and(3.19),wehave

ϕn→0stronglyin L2(Rn),(45)

ϕn→0stronglyin Lp(Rn).(46)

Since ϕn∈M, R(ϕn)=0,weobtain

(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)→0,n→∞.(47)

Ontheotherhand,from(2.3)wehave

(∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)−2p∫|ϕn|pdx→dM.(48)

From(3.20)-(3.21)weobtain (∫|∇ϕ|2dx+∫V(x)|ϕ|2dx)→dM.AccordingtoProposition 3.2, dM≥c>0.Thisisincontradictoryto(3.22).Thus ϕ∞≠0.

AccordingtoProposition 3.3,wetake Q=(ϕ∞)μwith μ>0uniquelydeterminedbythecondition R(Q)=R[(ϕ∞)μ]=0.From(3.17)-(3.19),wehave

(ϕ∞)μ→Qstronglyin L2(Rn),(49)

(ϕ∞)μ→Qstronglyin Lp(Rn),(50)

(ϕ∞)μ⇀Qweaklyin H1(Rn).(51)

Since R(ϕn)=0 andbyProposition 3.3,weget

S[(ϕ∞)μ]≤S(ϕn).(52)

From(3

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1