七年级上数学教案.docx

上传人:b****7 文档编号:9974009 上传时间:2023-02-07 格式:DOCX 页数:17 大小:47.78KB
下载 相关 举报
七年级上数学教案.docx_第1页
第1页 / 共17页
七年级上数学教案.docx_第2页
第2页 / 共17页
七年级上数学教案.docx_第3页
第3页 / 共17页
七年级上数学教案.docx_第4页
第4页 / 共17页
七年级上数学教案.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

七年级上数学教案.docx

《七年级上数学教案.docx》由会员分享,可在线阅读,更多相关《七年级上数学教案.docx(17页珍藏版)》请在冰豆网上搜索。

七年级上数学教案.docx

七年级上数学教案

课堂教学设计

班级

七6

科目

数学

授课人

高丽

授课时间

第3周

课题

课题:

绝对值

课型

新课

课时

第1课时(总第6课时)

三维目标

一、知识与技能

(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值.

(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用.

二、过程与方法

通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力.

三、情感态度与价值观

培养学生积极参与探索活动,体会数形结合的方法.

教学重、难点与关键

1.重点:

正确理解绝对值的概念,能求一个数的绝对值.

2.难点:

正确理解绝对值的几何意义和代数意义.

3.关键:

借助数轴理解绝对值的几何意义,根据绝对值定义和相反数的概念,理解绝对值的代数意义.

一、教学过程

一、复习提问,新课引入

1.什么叫互为相反数?

2.在数轴上表示互为相反数的两个点和原点的位置关系怎样?

二、新授

在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向.

1.观察课本第11页图1.2-5,回答:

(1)两辆汽车行驶的路线相同吗?

(2)它们行驶路程的远近相同吗?

这两辆车行驶的路线不同(方向相反),但行驶的路程的远近相同,都是10km.

课本图1.2-5中表示-10的点B和表示10的点A离开原点的距离都是10,我们就把这个距离10叫做数-10、10的绝对值.

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.

这里的数a可以是正数、负数和0.

例如上述的10和-10的绝对值记作│10│=10,│-10│=10,同样在数轴上表示+6和-6的两个点,离开原点的距离都是6,即6和-6的绝对值都是6,记作│6│=6,│-6│=6.数轴上表示数0的点与原点的距离是0,所以│0│=0.

2.试一试:

(1)│+2│=______,││=_____,│+10.6│=________.

(2)│0│=_______.

(3)│-12│=_______,│-20.8│=_______,│-32

│=_______.

3.你能从上面解答中发现什么规律吗?

学生若有困难,教师可提示:

所得的结果与绝对值符号内的数有什么关系?

从而得出绝对值的代数意义:

(1)一个正数的绝对值是它本身;

(2)零的绝对值是零;

(3)一个负数的绝对值是它的相反数.

我们用a表示任意一个有理数,上述式子可以表示为:

①当a是正数时,│a│=_______;

②当a是负数时,│a│=_______;

③当a=0时,│a│=_______.

以上先让学生填空,然后让学生给a取一些具体数值检验所填写的结果是否正确.

教师问:

(1)任何一个有理数都有绝对值吗?

一个数的绝对值有几个?

(2)有没有一个数的绝对值等于-2?

任何一个数的绝对值一定是怎样的数?

(3)绝对值等于2的数有几个?

它们是什么?

归纳

①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,不可能是负数,即对任意有理数a,总有│a│≥0.

②两个互为相反数的绝对值相等,即│a│=│-a│.

③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.

三、巩固练习

1.课本第12页练习1、2题.

第1题强调书写格式,防止出现“-8=8”的错误.

第2题

(1)错,如3与-2的符号相反,但它们不是互为相反数,应改为“只有大小相等符号相反的数是互为相反数”.

(2)正确.(3)错,因为这个点也可能越靠左,应改为:

“一个数的绝对值越大,表示它的点离原点越远.”(4)正确.

四、课堂小结

理解绝对值的几何意义和代数意义.从几何意义可知,一个数的绝对值是表示该数的点与原点的距离,因为距离总是正数和零,所以有理数的绝对值不可能是负数,从绝对值的代数定义也可进一步理解这一点.

引入绝对值概念后,有理数可以理解为由性质符号和绝对值两部分组成的,如-5就是由“-”号和它的绝对值5两部分组成.

五、作业布置

1.课本第15页习题1.2第4、7、10题.

教后反思

 

 

课堂教学设计

班级

七6

科目

数学

授课人

高丽

授课时间

第3周

课题

课题:

绝对值

课型

新课

课时

第2课时(总第7课时)

三维目标

一、知识与技能

掌握有理数的大小比较的两种方法──利用数轴和绝对值.

二、过程与方法

经历利用绝对值以及利用数轴比较有理数的大小,进一步体会“数形结合”的数学方法,培养学生分析、归纳的能力.

三、情感态度与价值观

会把所学知识运用于解决实际问题,体会数学知识的应用价值.

教学重、难点与关键

1.重点:

会利用绝对值比较有理数的大小.

2.难点:

两个负数的大小比较.

3.关键:

正确理解绝对值的概念.

一、教学过程

1、复习提问,引入新课

用“>”、“<”号填空.

1.5.7______6.3;2.

_____

;3.0.03_______0;

4.│-3│_______│2│;5.│-

│_______│-

│.

二、新授

引入负数后,如何比较两个有理数的大小呢?

让我们从熟悉的温度来比较,大家观察课本第12页中“未来一周天气预报”.

1.课本图1.2-6中共有14个温度,其中最低的是多少?

最高的是多少?

2.请你将这14个温度按从低到高的顺序排列.

课本图1.2-6中的14个温度按从低到高排列为:

-4℃,-3℃,-2℃,-1℃,0℃,1℃,2℃,3℃,4℃,5℃,6℃,7℃,8℃,9℃.

按照这个顺序排列的温度,在温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的,如课本图1.2-7,这就是说在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数,因此,我们可以利用数轴比较有理数的大小.

例如在数轴上表示-6的点在表示-5的点的左边,所以-6<-5.

同样-5<-4,-3

<-3,-2<0,-1<1,…

从数轴上可知:

表示正数的点都在原点的右边;表示负数的点都在原点左边.

因此有正数大小0,0大于负数,正数大于负数.

两个正数的大小比较小学已学过,不画数轴你会比较两个负数的大小吗?

探索:

我们知道,在数轴上越靠左边的点所表示的数越小,而这个点与原点的距离越大,即这个点所表示的数的绝对值越大,因此,我们还可以利用绝对值比较两个负数的大小.

即两个负数,绝对值大的反而小.

例如:

│-2│=2,│-5│=5,即│-2│<│-5│,因此-2>-5.

同样│-1│<│-3│,所以-1>-3.

例1:

比较下列各对数的大小:

(1)-(-1)和-(+2);

(2)-

和-

;(3)-(-0.3)和│-

│.

解:

(1)先化简,-(-1)=1,-(+2)=-2,

正数大于负数,1>-2.即-(-1)>-(+2).

(2)这是两个负数比较大小,要比较它们的绝对值,绝对值大的反而小.

│-

│=

,│-

│=

=

因为

<

,即│-

│<│-

│,

所以-

>-

(3)先化简,-(-0.3)=0.3,│-

│=

=

,0.3<0.3,即-(-0.3)<│-

│.

初学时,要求学生按以上步骤进行,能化简的要先化简,然后按照有理数的大小比较法则:

异号两数比较大小,要考虑它们的正负,根据“正数大于负数”,同号两数比较大小,要考虑它们的绝对值,特别是两个负数大小比较,先各自求出它们的绝对值,然后依法则:

两个负数,绝对值大的反而小,比较绝对值大小后,即可得出结论.

例2:

已知a>0,b<0且│b│>│a│,比较a,-a,b,-b的大小.

解:

方法一,可通过数轴来比较大小,先在数轴上找出a,-a,b,-b的大致位置,再比较.

由a>0,b<0可知表示a的点在原点的右边,表示b的点在原点的左边;由│b│>│a│,可知表示b的点离开原点的距离更远,即它应在表示a的点的左边,然后再根据两个互为相反数在数轴上所表示的点在原点两边,且与原点距离相等即可得到下图.

根据数轴上,较左边的点所表示的数较小,可得:

b<-a

三、课堂练习

1.课本第14页练习.

2.补充练习:

(1)比较大小,并用“<”连结.

①-

,-

,-

;②-(-10),-│-10│,9,-│+18│,0.

(2)有理数a,b在数轴上的表示如下图,用“>”或“<”号填空.

①a_____b;②│a│_____│b│;③-a_____-b;④

_____

四、全课小结(提问式)

比较有理数的大小有哪几种方法?

有两种方法,方法一:

利用数轴,把这些数用数轴上的点表示出来,然后根据“数轴上较左边的点所表示的数比较右边的点所表示的数小”来比较.

方法二:

利用比较法则:

“正数大于零,负数小于零,两个负数比较绝对值大的反而小”来进行.

在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数.

五、作业布置

1.课本第15页习题1.2第5、6、8题.

课堂教学设计

班级

七6

科目

数学

授课人

高丽

授课时间

第3周

课题

课题:

1.3.1有理数的加法

(1)

课型

新课

课时

第1课时(总第8课时)

 

三维目标

一、知识与技能

理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.

二、过程与方法

引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力.

三、情感态度与价值观

培养学生主动探索的良好学习习惯.

教学重、难点与关键

1.重点:

掌握有理数加法法则,会进行有理数的加法运算.

2.难点:

异号两数相加的法则.

3.关键:

培养学生主动探索的良好学习习惯.

一、教学过程

1、复习提问,引入新课

1.有理数的绝对值是怎样定义的?

如何计算一个数的绝对值?

2.比较下列每对数的大小.

(1)-3和-2;

(2)│-5│和│5│;(3)-2与│-1│;(4)-(-7)和-│-7│.

二、新授

下面借助数轴来讨论有理数的加法.

看下面的问题:

一个物体作左右方向的运动,我们规定向左为负、向右为正.

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

我们知道,求两次运动的总结果,可以用加法来解答.

这里两次都是向右运动,显然两次运动后物体从起点向右运动了8m,写成算式就是:

5+3=8①

这一运算在数轴上可表示,其中假设原点为运动的起点.(如下图)

(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?

显然,两次运动后物体从起点向左运动了8m,写成算式就是:

(-5)+(-3)=-8②

这个运算在数轴上可表示为(如下图):

(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后物体与起点的位置关系如何?

在数轴上我们可知物体两次运动后位于原点的右边,即从起点向右运动了2m.(如下图)

写成算式就是:

5+(-3)=2③

探究:

还有哪些可能情形?

请同学们利用数轴,求以下情况时物体两次运动的结果:

(4)先向右运动3m,再向左运动5m,物体从起点向______运动了______m.

要求学生画出数轴,仿照(3)画出示意图.

写出算式是:

3+(-5)=-2④

(5)先向右运动5m,再向左运动5m,物体从起点向_____运动了_____m.

先向右运动5m,再向左运动5m,物体回到原来位置,即物体从起点向左(或向右)运动了0m,因为+0=-0,所以写成算式是:

5+(-5)=0⑤

(6)先向左运动5m,再向左运动5m,物体从起点向________运动了_______m.

同样,先向左边运动5m,再向右运动5m,可写成算式是:

(-5)+5=0⑥

如果物体第1秒向右(或左)运动5m,第2秒原地不动,两秒后物体从起点向右(或左)运动了多少呢?

请你用算式表示它.

可写成算式是:

5+0=5或(-5)+0=-5⑦

从以上写出的①~⑦个式子中,你能总结出有理数加法的运算法则吗?

引导学生观察和的符号和绝对值,思考如何确定和的符号?

如何计算和的绝对值?

算式是小学已学过的两个正数相加.观察算式②,两个加数的符号相同,都是“-”号,和的符号也是“-”号与加数符号相同;和的绝对值8等于两个加数绝对值的和,即│-5│+│-3│=│-8│.

由①②可归结为:

同号两数相加,取相同的符号,并把绝对值相加.

例如(-4)+(-5)=-(4+5)=-9.

观察算式③、④是两个互为相反数相加,和为0.由算式③~⑥可归结为:

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数相加得0.由算式⑦知,一个数同0相加,仍得这个数.

综合上述,我们发现有理数的加法法则,让学生朗读课本第18页中“有理数的加法法则”.

一个有理数由符号与绝对值两部分组成,进行加法运算时,必先确定和的符号,再确定和的绝对值.例1:

计算.

(1)(-3)+(-5);

(2)(-4.7)+2.9;(3)

+(-0.125).

分析:

本题是有理数加法,所以应遵循加法法则,按判断类型,确定符号、计算绝对值的步骤进行计算.

(1)是同号两数相加,按法则1,取原加数的符号“-”,并把绝对值相加.

(2)是绝对值不相等的异号两数相加.(3)是绝对值相等的两数相加,根据法则2进行计算.

解:

(1)(-3)+(-5)=-(3+5)=-8;

(2)(-4.7)+2.9=-(4.7-2.9)=-1.8;

(3)

+(-0.125)=

+(-

)=0.

三、巩固练习课本第18页练习1、2题.

四、课堂小结

有理数的加法法则指出进行有理数加法运算,首先应该先判断类型,然后确定和的符号,最后计算和的绝对值.类型为异号两数相加,和的符号依法则取绝对值较大的加数的符号,并把绝对值相减,因为正负互相抵消了一部分.有理数加法还打破了算术数加法中和一定大于加数的常规.

五、作业布置1.课本第24页习题1.3第1题.

 

课堂教学设计

班级

七6

科目

数学

授课人

高丽

授课时间

第3周

课题

课题:

1.3.1有理数的加法

(2)

课型

新课

课时

第2课时(总第9课时)

三维目标

一、知识与技能

(1)能运用加法运算律简化加法运算.

(2)理解加法运算律在加法运算中的作用,培养学生的观察能力和思维能力.

二、过程与方法

经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力.

三、情感态度与价值观

体会有理数加法运算律的应用价值.

教学重、难点与关键

1.重点:

有理数加法运算律.

2.难点:

灵活运用加法运算律.

3.关键:

正确理解加法运算律在加法运算中的作用.

教具准备

投影仪.

一、教学过程

复习提问,引入新课

1.叙述有理数的加法法则.

2.在小学里,数的加法有哪些运算律?

二、新授

在小学里,数的加法满足交换律、结合律.

如:

5+3.5=3.5+5,(5+3.5)+2.5=5+(3.5+2.5).

引进负数后,这些运算律还适用吗?

探索:

例1.计算:

30+(-20),(-20)+30.

两次所得的和相同吗?

换几个加数试一试,让学生自己得出:

有理数的加法中,两个数相加,交换加数的位置和不变,即

加法交换律:

a+b=b+a.

例2.计算:

[8+(-5)]+(-4),8+[(-5)+(-4)].

两次所得的和相同吗?

换几个加数再试一试.

从而得到:

有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即

加法结合律:

(a+b)+c=a+(b+c).

上述a、b、c表示任意有理数,可以是正数,也可以是负数.

这样,多个有理数相加可以任意交换加数位置,也可以先把其中的几个数相加,使计算简化.

例3.计算:

16+(-25)+24+(-35).

分析:

先观察题目中数据特点,根据运算律,选择合理途径.

本题采用正、负数分开相加的方法.

解:

原式=(16+24)+[(-25)+(-35)]

=40+(-60)

=-20

例4.每袋小麦的标准重量为90千克,10袋小麦称重记录如课本图1.3-3所示(课本第19页),与标准重量比较,10袋小麦总计超过多少千克或不足多少千克?

10袋小麦的总重量是多少?

分析:

怎样求这10袋小麦的总重量呢?

这是有理数加法在实际中的应用,本题有两种解法,教学时可先让学生相互交流,提出自己的想法,对不同的解法进行比较.

解法1:

先计算10袋小麦的总重量.

91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4,

再计算标准重量:

90×10=900.

所以这10袋小麦总计超过905.4-900=5.4(千克)

解法2:

先计算总误差,然后再求10袋小麦的总重量.

将每袋小麦超过标准重量的千克数记作正数,不足的千克数记作负数,10袋小麦的对应的数为+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1.

?

?

?

+1+1+1.5+(-1)+1.2+1.3+(1.3)+(-1.2)+1.8+1.1

=[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8+1.1)

=5.4

90×10+5.4=905.4

所以10袋小麦总计超过标准5.4千克,总重量为905.4千克.

三、巩固练习

1.课本第20页,练习1、2.

四、课堂小结

本节课我们探索了有理数加法的运算律,灵活运用加法的运算律使运算简便.一般情况下,将互为相反数的数结合相加;同分母的分数能凑整的数结合;正数、负数分别相加,以使计算简便.

七、作业布置

1.课本第25页习题1.3第2题,第26页第9、10、12题.

教后反思

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 人力资源管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1