小学数学新课程标准doc.docx
《小学数学新课程标准doc.docx》由会员分享,可在线阅读,更多相关《小学数学新课程标准doc.docx(29页珍藏版)》请在冰豆网上搜索。
小学数学新课程标准doc
小学数学新课程标准
第一部分前言
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。
数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐的发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
一、基本理念
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:
——人人学有价值的数学;
——人人都能获得必需的数学;
——不同的人在数学上得到不同的发展。
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同、学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。
对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响、数学课程的设计与实施应重视运用现代信息技术、特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
二、设计思路
(一)关于学段
为了体现义务教育阶段数学课程的整体性,(全日制义务教育数学课程标准(实验稿))(以下简称《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段。
第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
(二)关于目标
根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方面作出了进一步的阐述。
《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词,从而更好地体现了(标准)对学生在数学思考、解决问题以及情感与态度等方面的要求。
知识技能目标
了解
能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出来这一对象。
理解
能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握
能在理解的基础上,把对象运用到新的情境中。
灵活应用
能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标
经历
(感受)
在特定的数学活动中,获得一些初步的经验。
体验
(体会)
参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。
探索
主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系。
(三)关于学习内容
在各个学段中,《标准》安排了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个学习领域。
课程内容的学习,强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念、以及应用意识与推理能力。
数感主要表现在:
理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
符号感主要表现在:
能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
空间观念主要表现在:
能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化。
能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系。
能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。
统计观念主要表现在:
能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
应用意识主要表现在:
认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
推理能力主要表现在:
能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言、合乎逻辑地进行讨论与质疑。
为了体现数学课程的灵活性和选择性,《标准》在内容标准中仅规定了学生在相应学段应该达到的基本水平,教材编者及各地区、学校,特别是教师应根据学生的学习愿望及其发展的可能性,实施因材施教。
同时,《标准》并不规定内容的呈现顺序和形式,教材可以有多种编排方式。
(四)关于实施建议
《标准》针对教学、评价、教材编写、课程资源的利用与开发提出了建议。
供有关人员参考,以保证《标准》的顺利实施。
为了解释与说明相应的课程目标或课程实施建议,《标准》还提供了一些案例,供参考。
第二部分课程目标
一、总体目标
通过义务教育阶段的数学学习,学生能够:
●获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;
●初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
●体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;
●具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。
具体阐述如下:
知识与技能
●经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。
●经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,并能解决简单的问题。
●经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题。
数学思考
●经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维。
●丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
●经历运用数据描述信息、作出推断的过程,发展统计观念。
●经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。
解决问题
●初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识。
●形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。
●学会与人合作,并能与他人交流思维的过程和结果。
●初步形成评价与反思的意识。
情感与态度
●能积极参与数学学习活动,对数学有好奇心与求知欲。
●在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
●初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
●形成实事求是的态度以及进行质疑和独立思考的习惯。
以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它们是在丰富多彩的数学活动中实现的。
其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。
二、学段目标
,
第一学段(1~3年级)
第二学段(4~6年级)
知识与技能
●经历从日常生活中抽象出数的过程,认识万以内的数、小数、简单的分数和常见的量;了解四则运算的意义,掌握必要的运算(包括估算)技能。
●经历直观认识简单几何体和平面图形的过程,了解简单几何体和平面图形,感受平移、旋转、对称现象,能初步描述物体的相对位置,获得初步的测量(包括估测)、识图、作图等技能。
●对数据的收集、整理、描述和分析过程有所体验,掌握一些简单的数据处理技能;初步感受不确定现象。
●经历从现实生活中抽象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分数、负数的意义,掌握必要的运算(包括估算)技能;探索给定事物中隐含的规律,会用方程表示简单的数量关系,会解简单的方程。
●经历探索物体与图形的形状、大小、运动和位置关系的过程,了解简单几何体和平面图形的基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图、作图等技能。
●经历收集、整理、描述和分析数据的过程,掌握一些数据处理技能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。
数学思考
●能运用生活经验,对有关的数字信息作出解释,并初步学会用具体的数描述现实世界中的简单现象。
●在对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念。
●在教师的帮助下,初步学会选择有用信息进行简单的归纳与类比。
●在解决问题过程中,能进行简单的、有条理的思考。
●能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描述并解决现实世界中的简单问题。
●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念。
●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。
●在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。
解决问题
●能在教师指导下,从日常生活中发现并提出简单的数学问题。
●了解同一问题可以有不同的解决办法。
●有与同伴合作解决问题的体验。
●初步学会表达解决问题的大致过程和结果。
●能从现实生活中发现并提出简单的数学问题。
●能探索出解决问题的有效方法,并试图寻找其他方法。
●能借助计算器解决问题。
●在解决问题的活动中,初步学会与他人合作。
●能表达解决问题的过程,并尝试解释所得的结果。
●具有回顾与分析解决问题过程的意识。
情感与态度
●在他人的鼓励与帮助下,对身边与数学有关的某些事物有好奇心,能够积极参与生动、直观的数学活动。
●在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。
●了解可以用数和形来描述某些现象,感受数学与日常生活的密切联系。
●经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性。
●在他人的指导下,能够发现数学活动中的错误并及时改正。
●对周围环境中与数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动。
●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难,有克服困难和运用知识解决问题的成功体验,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得不断的进步。
●体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
●通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性。
●对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题进行讨论,发现错误能及时改正。
第三部分内容标准
本部分分别阐述各个学段中“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容标准。
“数与代数”的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。
“空间与图形”的内容主要涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间、并进行交流的重要工具。
“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的推断和预测。
“实践与综合应用”将帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题,以发展他们解决问题的能力,加深对“数与代数”“空间与图形”“统计与概率”内容的理解,体会各部分内容之间的联系。
内容结构表
学段
第一学段(1~3年级)
第二学段(2~6年级)
数与代数
●数的认识
●数的运算
●常见的量
●探索规律
●数的认识
●数的运算
●常见的量
●探索规律
空间与图形
●图形的认识
●测量
●图形与变换
●图形与位置
●图形的认识
●测量
●图形与变换
●图形与位置
统计与概率
●数据统计活动初步
●不确定现象
●简单数据统计过程
●可能性
实践与综合应用
●实践活动
●综合应用
三、教材编写建议
教材为学生的学习活动提供了基本线索,是实现课程目标、实施教学的重要资源。
教材编写应以《标准》为基本依据,要充分提供有趣的、与儿童生活背景有关的素材,题材宜多样化,呈现方式应丰富多彩。
教材的编写应有助于确立学生在教学过程中的主体地位,激发学生的学习兴趣,引导学生在积极思考与合作交流中获得良好的情感体验,建构自己的数学知识。
教材的编写还要有利于调动教师的能动性,创造性地进行教学。
考虑到不同学生之间的差异,在保证基本要求的前提下,教材应体现出自己的特色,并具有一定的弹性。
教材编写时,应充分考虑与其他课程资源的开发和利用相结合。
(一)选取密切联系学生生活、生动有趣的素材
在本学段教材编写中,应力求从学生熟悉的生活情境与童话世界出发,选择学生身边的、感兴趣的事物,提出有关的数学问题,以激发学生学习的兴趣与动机,使学生初步感受数学与日常生活的密切联系。
教材所选取的素材,要使得学生能比较容易地找到相应的实物或者模型。
例如,对于统计内容的学习,可以选取文具、玩具、食物、水果、校园里的事物作为统计对象;对于概率内容的学习,可以把1支红小棒、5支白小棒放在一个口袋里,让学生预测摸出什么颜色的小棒可能性大。
这样的设计,既便于教师组织教学,也利于学生进行操作。
实践活动素材的选择,要符合学生的年龄特征与生活经验,提供具体、有趣、富有一定启发性的活动(如数学游戏),让学生经历应用数学知识分析问题和解决问题的过程,积累数学活动的经验。
如新年前夕班里准备开联欢会,需要买水果,你认为买哪种水果好些?
这是一个与学生生活密切相关的问题,为了解决这个问题,学生要调查全班同学每人最喜欢吃的一种水果,再根据统计结果进行分析,做出合理的决策。
(二)为学生提供积极思考与合作交流的空间
教材的编写要有利于学生进行观察、实验、操作、推理、交流等活动。
无论是新课题的引入还是教学内容的展开,都应力求创设具有启发性的问题情境,体现知识的形成过程。
教材可以设立“看一看”“做一做”“想一想”“说一说”“读一读”等栏目,引导学生进行自主性的学习活动;还可以适当提供开放性的问题和合作交流的机会,为学生拓展探索的空间。
如在认识加法时,可采用如下素材,让学生自己去发现一些数量关系,并解释加法算式的实际意义。
在上例所提供的问题情境中,有3个小孩在玩耍,背景还有3棵树。
这3个小孩可以根据游戏中的角色分工或者性别分为两类,这3棵树也可以根据所处的位置或大小分为两类。
因此,这个问题情境就蕴含着丰富的数学信息,学生可以从不同的角度对算式2+1=3的实际意义作出解释。
通过提供这样的探索与交流活动,可以使学生更好地体会加法运算的意义。
又如,在认识东、南、西、北等方向时,教材可提供以下的实践活动。
例1在操场上,师生一起辨认东、南、西、北。
(1)看一看东、南、西、北四个方向上各有什么。
(2)把看到的物体记录下来。
(3)把你的记录纸贴在黑板上,互相看看有什么不同。
(4)根据你的记录完成下图。
(三)呈现方式要丰富多彩
本学段学生以形象思维为主,在教材编写时,应采用多种多样的形式(如图片、游戏、卡通、表格、文字等),直观形象、图文并茂、生动有趣地呈现素材,提高学生的学习兴趣,满足多样化的学习需求。
例2袋鼠经营的商店有16支铅笔,小兔买走了9支,还剩多少支?
该例可以采用系列的卡通图画来呈现问题情境以及计算16-9的多种方法。
如,小老鼠一根一根地减;小兔子把16分成10和6,10-9=1,1+6=7;小山羊把9分成6和3,16-6=10,10-3=7;狗先生说:
“还可以这样算,9+7=16,16-9=7。
”
例3某班要举行一次朗诵比赛,每位学生的朗读时间规定为3分,一位同学选了一篇930字的文章,在赛前试读时,他用了6分,怎么办?
该例可采用对话的形式呈现解决问题的思考过程。
素材呈现方式的多样化有利于学生展开学习活动,促进独立思考以及在小组中的合作与交流。
(四)重要的教学概念与教学思想宜逐步深入
根据学生已有经验、心理发展规律以及所学内容的特点,一些重要的数学概念与数学思想方法应采用逐步渗透、深化、螺旋上升的方式编排,以便逐步实现本学段的学习目标。
按这种方式编排的有关内容,既要注意其间的承继关系,又要避免不必要的重复。
如对“图形的认识”内容的学习,可以自“从不同位置观察物体”的学习开始,通过设计从上面、侧面等不同位置观察小汽车、茶壶等实物,使学生知道从不同位置看到的形状是不一样的;以后,再引导学生从上面、正面、侧面观察图形(正方体、长方体等);进一步,还可以设计搭摆立方块的活动,如由3个立方块搭成的立体,从上面看,形状是,这个立体是什么形状?
搭一搭,有几种搭法?
如果这个形状是从正面看到的,这个立体是什么形状?
还可以提供进一步的问题,如:
有一个由4个立方块搭成的立体,从上面看,形状是,你能想像这个立体是什么形状吗?
对于更多个立方块的情况,可以在第二学段或第三学段出现。
(五)内容设计要有一定的弹性
《标准》所列出的目标是全体学生都应达到的基本要求,教材编写必须明确这些基本要求,不要任意拔高,以确保基本要求的实现。
另一方面,由于各地区、各学校以及学生个人之间存在着差异,教材编写应体现一定的弹性,以满足学生的不同学习要求,使全体学生都能得到相应的发展。
具体的设计方式可以就同一问题情境提出不同层次的问题,如一些具有现实背景的开放性问题和探索规律的问题,使每个学生都能对其中的一些问题给出自己的想法、获得成功的体验。
教材中还可以设计一些生动有趣的材料供学生选择阅读。
例如,在学习了乘法计算之后,可以安排如下的活动:
某花店有若干种标明价格的花,让学生提出不同的问题。
面对这样的素材,不同的学生会提出不同的问题,如,5枝玫瑰花需要多少钱?
10元钱可以配哪些花?
实践活动这部分内容的设计要使所有的学生都能参与,让不同的学生获得不同的体验和发展。
如,七巧板拼图就是一个学生都喜欢参与的活动。
学生的拼图作品寓意不同,逼真程度各异,充分表现了他们各自的想像力与创造性。
(六)介绍有关的数学背景知识
教材可以在适当的地方介绍一些有关数学家的故事、数学趣闻与数学史料,使学生了解数学知识的产生与发展首先源于人类生活的需要,体会数学在人类发展历史中的作用,激发学生学习数学的兴趣。
这部分内容的学习可以采用阅读材料的形式呈现。
具体内容的介绍,应从学生的年龄特点出发,做到浅显具体、生动有趣。
本学段教材中可以呈现如下的数学史料:
介绍数的概念的起源,使学生体会数起源于“数”(shǔ),量起源于“量”(liáng);介绍数的原始表示法(结绳记数与刻痕记数);通过历史资料使学生体会“0”的双重含义──作为位值制记数法中的空位记号与作为一个独立的数;通过原始社会石器与陶器的几何形状和图案介绍原始人对简单形状与图案的认识,使学生感受到现实生活中充满了图形。
小学数学新课程标准(全部)
第二学段(4~6年级)
一、教学建议
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。
教师是学生数学活动的组织者、引导者与合作者。
教师要积极利用各种教学资源,创造性地使用教材,设计适合学生发展的教学过程。
要关注学生的个体差异,使每一个学生都有成功的学习体验,得到相应的发展;要因地制宜、合理有效地使用现代化教学手段,提高教学效益。
(一)让学生在现实情境中体验和理解数学
在本学段的教学中,要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。
例如,计算教学应注意与学生的现实生活相联系,让学生感受到通过计算可以解决一些实际问题。
如,我们可以让学生估计一下,哪个答案接近自己的年龄?
(①500分;②500周;③500时;④500月)学生可能会运用不同的方法进行猜测。
此时,教师可以进一步引导学生如何知道自己的猜测是准确的或比较准确的。
为了回答这个问题,学生将会进行必要的计算,从而体会计算的必要性,在具体的计算中,可以鼓励学生使用计算器。
又如,在空间与图形的教学中,应充分利用学生生活中的事物,引导学生探索