汽车电工的基础知识.docx

上传人:b****7 文档编号:9912870 上传时间:2023-02-07 格式:DOCX 页数:11 大小:23.59KB
下载 相关 举报
汽车电工的基础知识.docx_第1页
第1页 / 共11页
汽车电工的基础知识.docx_第2页
第2页 / 共11页
汽车电工的基础知识.docx_第3页
第3页 / 共11页
汽车电工的基础知识.docx_第4页
第4页 / 共11页
汽车电工的基础知识.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

汽车电工的基础知识.docx

《汽车电工的基础知识.docx》由会员分享,可在线阅读,更多相关《汽车电工的基础知识.docx(11页珍藏版)》请在冰豆网上搜索。

汽车电工的基础知识.docx

汽车电工的基础知识

汽车电工的基础知识  

.电阻损坏的特点及检测方法

1.电阻损坏的特点

电阻是电器设备中数量最多的元件,但不是损坏率最高的元件。

电阻损坏以开路最常见,阻值变大较少见,阻值变小十分少见。

常见的有碳膜电阻、金属膜电阻、线绕电阻和保险电阻几种。

前两种电阻应用最广,其损坏的特点一是低阻值(100Ω以下)和高阻值(100kΩ以上)的损坏率较高,中间阻值(如几百欧到几十千欧)的极少损坏;二是低阻值电阻损坏时往往是烧焦发黑,很容易发现,而高阻值电阻损坏时很少有痕迹。

线绕电阻一般用作大电流限流,阻值不大。

圆柱形线绕电阻烧坏时有的会发黑或表面爆皮、裂纹,有的没有痕迹。

水泥电阻是线绕电阻的一种,烧坏时可能会断裂,否则也没有可见痕迹。

保险电阻烧坏时有的表面会炸掉一块皮,有的也没有什么痕迹,但绝不会烧焦发黑。

1.电阻的检测方法

1)检查万用表电池

方法如下:

将挡位旋钮依次置于电阻挡R×1?

和R×10K挡,然后将红、黑测试笔短接。

旋转欧姆调零电位器,观察指针是否指向零(MF47型万用表如R×1?

挡,指针不能校零,则更换万用表的1.5V电池。

如R×10?

挡,指针不能校零,更换9V电池。

2)选择适当倍率挡

测量某一电阻器的阻值时,要依据电阻器的阻值正确选择倍率挡,按万用表使用方法规定,万用表指针应在全刻度的中心部分读数才较准确。

测量时电阻器的阻值是万用表上刻度的数值与倍率的乘积。

如测量一电阻器,所选倍率为R×1,刻度数值为9.4,该电阻器电阻值为R=9.4×1=9.4?

3)电阻挡调零

在测量电阻之前必须进行电阻挡调零。

其方法如检查电池方法一样(短接红黑测试笔),在测量电阻时,每更换一次倍率挡后,都必须重新调零。

2.测量前的准备工作

将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。

为了提高测量精度,根据被测电阻标称值的大小来选择量程。

由于欧姆挡刻度的非线性关系,它的中间一段分度较为精细,因此应使指针指示值尽可能落到刻度的中段位置,即全刻度起始的20%—80%弧度范围内,以使测量更准确。

根据电阻误差等级不同。

读数与标称阻值之间分别允许有±5%、±10%或±20%的误差。

如不相符,超出误差范围,则说明该电阻器变值了。

注意事项:

测试时,特别是在测几十KΩ以上阻值的电阻时,手不要触及表笔和电阻的导电部分;被检测的电阻人电路板中焊下来,至少要焊开一个引脚,以免电路中的其他元件对测试产生影响,造成测量误差;色环电阻的阻值虽然能以色环标志来确定,但在使用时最好还是用万用表测试下其实际阻值。

根据以上特点,在检查电阻时可有所侧重,快速找出损坏的电阻。

二.电解电容损坏的特点及检测方法

1.电解电容的损坏特点

电解电容在电器设备中的用量很大,故障率很高。

电解电容损坏有以下几种表现:

一是完全失去容量或容量变小;二是轻微或严重漏电;三是失去容量或容量变小兼有漏电。

查找损坏的电解电容方法有:

(1)看:

有的电容损坏时会漏液,电容下面的电路板表面甚至电容外表都会有一层油渍,这种电容绝对不能再用;有的电容损坏后会鼓起,这种电容也不能继续使用;

(2)摸:

开机后有些漏电严重的电解电容会发热,用手指触摸时甚至会烫手,这种电容必须更换;

(3)电解电容内部有电解液,长时间烘烤会使电解液变干,导致电容量减小,所以要重点检查散热片及大功率元器件附近的电容,离其越近,损坏的可能性就越大。

2.电解电容的检测方法

因为电解电容的容量比一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。

根据经验,一般情况下,470nF-—10μF间的电容,可用R×1k挡测量;10μF—300μF的电容可用R×100挡测量;300μF以上的电容可用R×1或R×10挡测量。

在检测电解电容器时,要先对电容器放电,特别是对于大容量的电解电容器,可以直接短路两个引脚进行放电。

然后万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。

此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。

实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。

在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。

三.半导体器件损坏的特点

1.半导体器件损坏的特点

二、三极管的损坏一般是PN结击穿或开路,其中以击穿短路居多。

此外还有两种损坏表现:

一是热稳定性变差,表现为开机时正常,工作一段时间后,发生软击穿;另一种是PN结的特性变差。

2.半导体器件的检测方法

用万用表R×1k测,各PN结均正常,但上机后不能正常工作,如果用R×10或R×1低量程档测,就会发现其PN结正向阻值比正常值大。

测量二、三极管可以用指针万用表在路测量,较准确的方法是:

将万用表置R×10或R×1档(一般用R×10档,不明显时再用R×1档)在路测二、三极管的PN结正、反向电阻,如果正向电阻不太大(相对正常值),反向电阻足够大(相对正向值),表明该PN结正常,反之就值得怀疑,需焊下后再测。

这是因为一般电路的二、三极管外围电阻大多在几百、几千欧以上,用万用表低阻值档在路测量,可以基本忽略外围电阻对PN结电阻的影响。

四.集成电路损坏的特点

集成电路内部结构复杂,功能很多,任何一部分损坏都无法正常工作。

集成电路的损坏也有两种:

彻底损坏、热稳定性不良。

彻底损坏时,可将其拆下,与正常同型号集成电路对比测其每一引脚对地的正、反向电阻,总能找到其中一只或几只引脚阻值异常。

对热稳定性差的,可以在设备工作时,用无水酒精冷却被怀疑的集成电路,如果故障发生时间推迟或不再发生故障,即可判定。

通常只能更换新集成电路来排除。

用指针万用表测电容的几种方法

在家电维修过程中,因电容漏电或容量变化而引发的故障可谓屡见不鲜且故障现象各异。

一般的指针万用表和部分数字万用表都无法测量电容,特别是那些小电容,给维修造成很大的不便。

在此,我给大家介绍几种小容量电容的测量方法,供参考。

方法l:

找一个β≥250的晶体三极管(要求穿透电流要小),如一时找不到,可用两只同型号的三极管复合成达林顿形式,见图1。

将被测电容并接在三极管的c-e结(若为有极性电容则电容正极接三极管c极),然后用万用表R×10k挡,黑表笔接c极,红笔接e极,见图2,观察表针瞬时摆动程度。

照此法用几个已知容量的正常(高精确度)的电容反复测试,记录下表针每次的瞬时最大摆动幅值,l进行处理计算,算出表盘上每小格应代表的电容值,备日后参考之用。

对电容进行测量时,通过对所测电容表针摆动幅度与参考幅度进行比较可判断电容的好坏。

方法2:

找一个高精确度已知容量的电容(耐压250V以上)和一个自耦输出电压可调的变压器,见图3。

Cn为已知电容,Cx为待测电容,接好线通电之后测Cx与Cn上各自的分压,但需注意电源变压后的输出电压不应大于Cx的耐压。

此时可根据公式Uo/Ux=Co/Cx推算出Cx的容量。

若Cx的耐压在300V以上,则可直接将两只串联电容接于220V的交流电源(注:

此法只适应非极性电容)。

 

方法3:

若电容耐压在400V以上且只需估测电容容量,则可按图4接线,让被测电容与万用表某一表笔串接后,将万用表拨到电压挡(250V)测交流电压,如此用多个已知电容测试,记住表针摆动幅度,这样可为以后估测电容提供依据(注:

此法只限非极性电容)。

 

方法4:

电解电容的测量。

因电解电容存在极性问题,可照图5接一个半波整流二极管,根据被测电容的耐压适当选择自耦变压器的输出电压。

Co为已知容量的电解电容,cx为待测电容,照图接线测量后,根据公式Co/Cx=U0/Uv可算出Cx容量。

   三极管的管脚必须正确辨认,否则,接入电路不但不能正常工作,还可能烧坏晶体管。

己知三极管类型及电极,指针式万用表判别晶体管好坏的方法如下:

  ①测NPN三极管:

将万用表欧姆挡置"R×100"或"R×lk"处,把黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。

  ②测PNP三极管:

将万用表欧姆挡置"R×100"或"R×lk"处,把红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。

  当三极管上标记不清楚时,可以用万用表来初步确定三极管的好坏及类型(NPN型还是PNP型),并辨别出e、b、c三个电极。

测试方法如下:

  ①用指针式万用表判断基极b和三极管的类型:

将万用表欧姆挡置"R×100"或"R×lk"处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧),则假设的基极是正确的,且被测三极管为NPN型管;同上,如果两次测得的电阻值都很大(约为几千欧至几十千欧),则假设的基极是正确的,且被测三极管为PNP型管。

如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。

  ②判断集电极c和发射极e:

仍将指针式万用表欧姆挡置"R×100"或"R×1k"处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极(不能使b、c直接接触),通过人体,相当b、C之间接入偏置电阻,如图5-27(a)所示。

读出表头所示的阻值,然后将两表笔反接重测。

若第一次测得的阻值比第二次小,说明原假设成立,因为c、e问电阻值小说明通过万用表的电流大,偏置正常。

其等效电路如图5-27(b)所示,图中VCC是表内电阻挡提供的电池,R为表内阻,Rm为人体电阻。

用数字万用表测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为内部电池的正端。

例:

当把红表笔接在假设的基极上,而将黑表笔先后接到其余两个极上,如果表显示通〈硅管正向压降在0.6V左右),则假设的基极是正确的,且被测三极管为NPN型管。

  数字式万用表一般都有测三极管放大倍数的挡位(hFE),使用时,先确认晶体管类型,然后将被测管子e、b、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE的近似值。

  以上介绍的方法是比较简单的测试,要想进一步精确测试可以使用晶体管图示仪,它能十分清楚地显示出三极管的特性曲线及电流放大倍数等。

                      

 二极管符号

  二极管(国标)

  二极管的判别及参数

  1.简述

  半导体是一种具有特殊性质的物质,它不像导体一样能够完全导电,又不像绝缘体那样不能导电,它介于两者之间,所以称为半导体。

半导体最重要的两种元素是硅(读“guī”)和锗(读“zhě”)。

我们常听说的美国硅谷,就是因为那里有好多家半导体厂商。

  二极管应该算是半导体器件家族中的元老了。

很久以前,人们热衷于装配一种矿石收音机来收听无线电广播,这种矿石后来就被做成了晶体二极管。

 

  二极管最明显的性质就是它的单向导电特性,就是说电流只能从一边过去,却不能从另一边过来(从正极流向负极)。

我们用万用表来对常见的1N4001型硅整流二极管进行测量,红表笔接二极管的负极,黑表笔接二极管的正极时,表针会动,说明它能够导电;然后将黑表笔接二极管负极,红表笔接二极管正极,这时万用表的表针根本不动或者只偏转一点点,说明导电不良(万用表里面,黑表笔接的是内部电池的正极)。

  常见的几种二极管中有玻璃封装的、塑料封装的和金属封装的等几种。

像它的名字,二极管有两个电极,并且分为正负极,一般把极性标示在二极管的外壳上。

大多数用一个不同颜色的环来表示负极,有的直接标上“—”号。

大功率二极管多采用金属封装,并且有个螺母以便固定在散热器上。

?

 

2.半导体二极管的极性判别及选用

  

(1)半导体二极管的极性判别

  一般情况下,二极管有色点的一端为正极,如2AP1~2AP7,2AP11~2AP17等。

如果是透明玻璃壳二极管,可直接看出极性,即内部连触丝的一头是正极,连半导体片的一头是负极。

塑封二极管有圆环标志的是负极,如IN4000系列。

  无标记的二极管,则可用万用表电阻挡来判别正、负极,万用表电阻挡示意图见图T304。

  根据二极管正向电阻小,反向电阻大的特点,将万用表拨到电阻挡(一般用R×100或R×1k挡。

不要用R×1或R×10k挡,因为R×1挡使用的电流太大,容易烧坏管子,而R×10k挡使用的电压太高,可能击穿管子)。

用表笔分别与二极管的两极相接,测出两个阻值。

在所测得阻值较小的一次,与黑表笔相接的一端为二极管的正极。

同理,在所测得较大阻值的一次,与黑表笔相接的一端为二极管的负极。

如果测得的正、反向电阻均很小,说明管子内部短路;若正、反向电阻均很大,则说明管子内部开路。

在这两种情况下,管子就不能使用了。

  

(2)半导体二极管的选用

  通常小功率锗二极管的正向电阻值为300~500Ω,硅管为1kΩ或更大些。

锗管反向电阻为几十千欧,硅管反向电阻在500kΩ以上(大功率二极管的数值要大得多)。

正反向电阻差值越大越好。

  点接触二极管的工作频率高,不能承受较高的电压和通过较大的电流,多用于检波、小电流整流或高频开关电路。

面接触二极管的工作电流和能承受的功率都较大,但适用的频率较低,多用于整流、稳压、低频开关电路等方面。

  选用整流二极管时,既要考虑正向电压,也要考虑反向饱和电流和最大反向电压。

选用检波二极管时,要求工作频率高,正向电阻小,以保证较高的工作效率,特性曲线要好,避免引起过大的失真。

  3.半导体分立元器件命名方法

  利用二极管单向导电的特性,常用二极管作整流器,把交流电变为直流电,即只让交流电的正半周(或负半周)通过,再用电容器滤波形成平滑的直流。

事实上好多电器的电源部分都是这样的。

二极管也用来做检波器,把高频信号中的有用信号“检出来”,老式收音机中会有一个“检波二极管”,一般用2AP9型锗管。

  二极管的类型也有好几种,对于电子制作来说,常常用到以下的二极管:

用于稳压的稳压二极管,用于数字电路的开关二极管,用于调谐的变容二极管,以及光电二极管等,最常看见的是发光二极管。

1.发光二极管

  

(1)符号

      

  

(2)发光二极管

  发光二极管在日常生活电器中无处不在,它能够发光,有红色、绿色和黄色等,有直径为3mm或5mm圆形的,也有规格为2×5mm长方形的。

与普通二极管一样,发光二极管也是由半导体材料制成的,也具有单向导电的性质,即只有极性正确才能发光。

  发光二极管的发光颜色一般和它本身的颜色相同,但是近年来出现了透明的发光管,它也能发出红黄绿等颜色的光,只有通电了才能知道。

辨别发光二极管正负极的方法,有实验法和目测法。

实验法就是通电看看能不能发光,若不能就是极性接错或是发光管损坏。

  注意发光二极管是一种电流型器件,虽然在它的两端直接接上3V的电压后能够发光,但容易损坏,在实际使用中一定要串接限流电阻,工作电流根据型号不同一般为1mA到30mA。

另外,由于发光二极管的导通电压一般为1.7V以上,所以一节1.5V的电池不能点亮发光二极管。

同样,一般万用表的R×1挡到R×1k挡均不能测试发光二极管,而R×10k挡由于使用15V的电池,能把有的发光管点亮。

  用眼睛来观察发光二极管,可以发现内部的两个电极一大一小。

一般来说,电极较小、个头较矮的一个是发光二极管的正极,电极较大的一个是它的负极。

若是新买来脚较长的一个是正极。

 

  (3)发光二极管的伏安特性  发光二极管的伏安特性与普通二极管类似,但它的正向压降较大,并在正向压降达到一定值时发光。

发光颜色和构成PN结的材料有关,通常有红、黄、绿、蓝和紫等颜色。

发光亮度近似和工作电流密度成正比,但掺杂ZnO和GaP的发光二极管,其发光亮度随电流密度的增加会很快趋向饱和。

另外,随结温的升高,LED的发光亮度将会减弱。

 

  由于发光二极管的响应时间(光信号对电信号的延迟时间)一般小于100ns,故直流信号、交流信号或脉冲信号均可作为它的驱动信号。

  国产LED器件用FG×1×2×3×4×5×6命名,其中×1表示材料,×1取值1,2,3分别对应LED的材料为GaAsP,GaAsAl和GaP。

×2表示发光颜色,×2取1~6时表示发光颜色为红、橙、黄、绿、蓝和复色,×3表示封装形式。

×4表示外形,取0~6各整数时,分别指发光二极管的外形为圆形、长方形、符号形、三角形、正方形、组合形和特殊形。

×5×6为序号。

使用发光二极管时,若用电压源驱动,则应在电路中串接限流电阻,以防止LED中电流过大而损坏。

用交流信号驱动时,为防止LED被反向击穿,可在两端反极性并连整流二极管。

几种红色发光二极管的参数见表B313。

 

 

 2.Z310半导体发光器件:

LED数码管

  常用的LED数码管如图T310(a)所示。

它是利用发光二极管的制造工艺,由7个条状管芯和一个点状管芯的发光二极管制成。

LED数码管有两种不同的结构形式,其等效电路分别如图T311所示。

各段发光二极管的阳极连在一起作为公共端,因此称为共阳极数码管。

工作时应当将阳极连电源正极,各驱动输入端通过限流电阻接相应的译码驱动器的输出。

当译码驱动器的输出为低电平时,数码管相应的段变亮。

 

  LED数码管各段发光二极管的伏安特性与普通二极管类似,只是正向压降稍大,在正向电流达到适当大小时就能发光。

在一定范围内,发光亮度和正向电流的大小近似成正比,但正向电流应小于允许的最大电流,并应留有适当的裕量,一般以不超过极限电流的70%为宜。

因此,它的驱动输入端和译码电路或电压源相连时,应当串接合适的限流电阻,以免损坏器件。

  表B314列出了几种数码管的参数。

 

  LED数码管的大小规格很多,一般尺寸大的工作电压也大,这是因为大尺寸数码管的每一段可能是由几个发光二极管串联组成,称为导光柱型。

国产LED数码管的管脚排列规格很多,因此,使用时除查产品说明书外,主要采用实测的方法来确定各管脚的功能,下面以共阳极数码管为例来说明。

  先按图T312准备好测试线路,把数码管的左下角接地,再使A端逐个和其它管脚接触。

若A端和所有管脚都已接触过,而数码管各段全不亮,则左下角管脚即为阳极或空脚(设数码管是好的)。

若A端接触管脚时数码管上某段变亮,则A端接触的管脚为阳极。

然后使A和阳极连好,用地线分别接触阳极以外的各管脚,相应的段就会变亮,从而可确定管脚和显示段间的对应关系。

  3.Z312半导体光敏器件:

光敏二极管 

  光敏二极管又称光电二极管,目前使用最多的是光电二极管。

它有四种类型:

PN结型,PIN结型,雪崩型和肖特基结型。

以下简介PN结型光敏二极管。

  PN结型光敏二极管同普通二极管一样,也是PN结构造,只是结面积较大,结深较浅,管壳上有光窗,从而使人射光容易注入PN结的耗尽区中进行光电转换,大的结面积增加了有效光面积,提高了光电转换效率。

  在无光照射时,光敏二极管的伏安特性和普通二极管一样,此时的反向饱和电流叫暗电流,一般在几微安到几百微安之间,其值随反向偏压的增大和环境温度的升高而增大。

在检测弱光电信号时,必须考虑用暗电流小的管子。

 

  在有光照时,光敏二极管在一定的反偏电压范围内(UR≥5V),其反向电流将随光照强度(10-3~103lx范围内)的增加而线性增加,这时的反向电流又叫光电流。

因此,对应一定的光照强度,光敏二极管相当于一个恒流源。

在有光照而无外加电压时,光敏二极管相当于一个电池,P区为正,N区为负。

  光敏二极管有一定光谱响应范围,并对某波长的光有最高的响应灵敏度(峰值波长)。

因此,为获取最大的光电流,应选择光谱响应特性符合待测光谱的光敏二极管,同时加大照度和调整入射的角度。

  光敏二极管的响应时间,一般小于几百微秒,主要取决于结电容和外部电路电阻的乘积。

表B316列出了几种光敏二极管的参数,其中灵敏度指输入给定波长的单位功率时,光敏二极管能输出的光电流值。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 研究生入学考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1