流体的PVT关系和状态方程.docx

上传人:b****7 文档编号:9859485 上传时间:2023-02-07 格式:DOCX 页数:17 大小:355.06KB
下载 相关 举报
流体的PVT关系和状态方程.docx_第1页
第1页 / 共17页
流体的PVT关系和状态方程.docx_第2页
第2页 / 共17页
流体的PVT关系和状态方程.docx_第3页
第3页 / 共17页
流体的PVT关系和状态方程.docx_第4页
第4页 / 共17页
流体的PVT关系和状态方程.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

流体的PVT关系和状态方程.docx

《流体的PVT关系和状态方程.docx》由会员分享,可在线阅读,更多相关《流体的PVT关系和状态方程.docx(17页珍藏版)》请在冰豆网上搜索。

流体的PVT关系和状态方程.docx

流体的PVT关系和状态方程

流體的P-V-T關系和狀態方程

教學目的要求

能熟練掌握流體(特別是氣體)的各種類型的P、V、T關系(包括狀態方程法和對應狀態法)及其應用、優缺點和應用范圍。

定性認識流體P-V-T行為;

掌握描述流體P-V-T關系的模型化方法,了解幾種常見的狀態方程;

掌握對比態原理和普遍化狀態方程

掌握計算真實氣體混合物P-V-T關系的方法,并會進行計算。

了解液體的P-V-T關系

教學內容

在化工過程的分析、研究與設計中,流體的壓力p、體積V和溫度T是流體最基本的性質之一,并且是可以通過實驗直接測量的。

而許多其它的熱力學性質如內能U、熵S、Gibbs自由能G等都不方便直接測量,它們需要利用流體的p–V–T數據和熱力學基本關系式進行推算。

因此,流體的p–V–T關系的研究是一項重要的基礎工作。

2.1純流體的P-V-T關系

2.2氣體的狀態方程

2.3對應態原理和普遍化關聯式

2.4真實氣體混合物的P-V-T關系

2.5液體的P-V-T關系

2.6狀態方程的比較、選用和應用

2.1純流體的P-V-T關系

純物質在平衡態下的p–V–T關系,可以表示為三維曲面,如圖2-1。

曲面上分單相區及兩相共存區。

曲線AC和BC代表汽液共存的邊界線,它們相交于點C,C點是純物質的臨界點,它所對應的溫度、壓力和摩爾體積分別稱為臨界溫度Tc、臨界壓力pc和臨界體積Vc。

將p–V–T曲面投影到平面上,則可以得到二維圖形。

圖2-2和2-3分別為圖2-1投影出的p–T圖和p–V圖。

圖2-2純物質的p–T圖圖2-3純物質的p–V圖

圖2-2中的三條相平衡曲線:

升華線、熔化線和汽化線,三線的交點是三相點。

高于臨界溫度和壓力的流體稱為超臨界流體,簡稱流體。

如圖2-2,從A點到B點,即從液體到汽體,沒有穿過相界面,即是漸變的過程,不存在突發的相變。

超臨界流體的性質非常特殊,既不同于液體,又不同于氣體,可作為特殊的萃取溶劑和反應介質。

近些年來,利用超臨界流體特殊性質開發的超臨界分離技術和反應技術成為引人注目的熱點。

圖2-3是以溫度T為參變量的p–V圖。

圖中包含了若干條等溫線,高于臨界溫度的等溫線曲線平滑并且不與相界面相交。

小于臨界溫度的等溫線由三個部分組成,中間水平段為汽液平衡共存區,每個等溫線對應一個確定的壓力,即為該純物質在此溫度下的飽和蒸氣壓。

曲線AC和BC分別為飽和液相線和飽和氣相線,曲線ACB包含的區域為汽液共存區,其左右分別為液相區和氣相區。

等溫線在兩相區的水平段隨著溫度的升高而逐漸變短,到臨界溫度時最后縮成一點C。

從圖2-3中可以看出,臨界等溫線在臨界點上是一個水平拐點,其斜率和曲率都等于零,在數學上表示為:

式(2-1)和(2-2)對于不同物質都成立,它們對狀態方程等的研究意義重大。

純物質PVT關系的應用:

超臨界技術和液化氣體成分的選擇

2.2氣體的狀態方程

纯物质的状态方程(EquationofState,EOS)是描述流体p-V-T性质的关系式,即:

f(p,T,V)=0

状态方程类型:

立方型、多常数型、理论型;

混合物的状态方程从纯物质出发,通过引入混合规则,来计算混合物的热力学性质。

2.2.1理想气体状态方程

假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。

在极低的压力下,真实气体可以当作理想气体处理,以简化问题。

理想气体状态方程是最简单的状态方程:

理想气体状态方程的用途:

1)在工程设计中,可以用理想气体状态方程进行近似的估算,低压下的气体(特别是难液化的N2,H2,CO,CH4,…);2)可以作为衡量真实气体状态方程是否正确的标准之一,当p→0或者V→∞时,任何真实气体状态方程都应还原为理想气体方程。

3)理想气体状态常被作为真实流体的参考态或初值。

2.2.2立方型状态方程

立方型状态方程是指方程可展开为体积(或密度)的三次方形式。

这类方程能够解析求根,有较高精度,又不太复杂,很受工程界欢迎。

(1)vanderWaals状态方程

该方程是第一个适用于实际气体的状态方程,与理想气体状态方程相比,它加入了参数a和b,它们分别表征分子间的引力和分子本身体积的影响,可以从流体的p-V-T实验数据拟合得到,也可以由纯物质的临界数据计算得到。

(2)Redlich-Kwong(RK)方程

RK方程的计算准确度比vanderWaals方程有较大的提高,可以比较准确地用于非极性和弱极性化合物,但对于强极性及含有氢键的化合物仍会产生较大的偏差。

RK方程能较成功地用于气相P-V-T的计算,但计算液相体积的准确性不够,不能同时用于汽、液两相。

为了进一步提高RK方程的精度,扩大其使用范围,便提出了更多的立方型状态方程。

对RK方程进行修正,但同时降低了RK的简便性和易算性。

成功的有Soave的修正式(SRK)。

(3)Soave-Redlish-Kwang方程(1972年)

为了提高RK方程对极性物质及饱和液体p–V–T计算的准确度。

Soave对RK方程进行了改进,称为RKS(或SRK,或Soave)方程。

方程形式为:

与RK方程相比,SRK方程可计算极性物质,更主要的是可计算饱和液体密度,使之能用于混合物的汽液平衡计算,故在工业上获得了广泛应用。

(4)Peng-Robinson方程

RK方程和RKS方程在计算临界压缩因子Zc和液体密度时都会出现较大的偏差,为了弥补这一明显的不足,Peng-Robinson于1976年提出了他们的方程,简称PR方程。

PR方程预测液体摩尔体积的准确度较SRK方程有明显改善,而且也可用于极性物质。

能同时适用于汽、液两相,在工程相平衡计算中广泛应用。

立方型状态方程根的求取

当T>Tc时,立方型状态方程有一个实根,它是气体容积。

当T

低压存在三个不同实根,最大的V值是蒸气容积,最小的V值是液体容积,中间的根无物理意义

求解方法:

直接迭代法和牛顿迭代法

三种问题类型:

1)已知T,V,求P;

显压型,直接计算

2)已知P,T,求V;

工程中常见情况,迭代求解。

3)已知P,V,求T。

迭代求解

2.2.3Virial(维里)方程

维里方程该方程利用统计力学分析了分子间的作用力,具有较坚实的理论基础。

方程的形式为:

维里系数的物理意义:

B,B':

第二维里系数,它表示对一定量的真实气体,两个分子间的作用所引起的真实气体与理想气体的偏差。

C,C':

第三维里系数,它表示对一定量的真实气体,三个分子间的作用所引起的真实气体与理想气体的偏差。

维里系数=f(物质,温度)

当方程(2-5)~(2-7)取无穷级数时,不同形式的virial系数之间存在着下述关系:

Virial截断式:

1.两项维里截断式:

2.三项维里截断式:

2.2.4多参数状态方程

与简单的状态方程相比,多参数状态方程可以在更宽的T、p范围内准确地描述不同物系的p-V-T关系;但其缺点是方程形式复杂,计算难度和工作量都较大。

(1)Benedict-Webb-Rubin方程(1940年)该方程在计算和关联轻烃及其混合物的液体和气体热力学性质时极有价值。

式中,ρ为密度;A0,B0,C0,a,b,c,α和γ等8个常数由纯物质的p-V-T数据和蒸气压数据确定。

在烃类热力学性质计算中,BWR方程计算精度很高,但该方程不能用于含水体系。

以提高BWR方程在低温区域的计算精度为目的,Starling等人提出了11个常数的Starling式(或称BWRS式)

(2)Martin-Hou方程(1955年)

该方程是1955年Martin教授和我国学者候虞钧提出的,简称MH方程。

(后又称为MH-55型方程)。

为了提高该方程在高密度区的精确度,1981年候虞钧教授等又将该方程的适用范围扩展到液相区,称为MH-81型方程。

MH-81型状态方程能同时用于汽、液两相,方程准确度高,适用范围广,能用于包括非极性至强极性的物质(如NH3、H2O),对量子气体H2、He等也可应用,在合成氨等工程设计中得到广泛使用。

状态方程的选用:

2.3对应态原理和普遍化关联式

状态方程存在的问题:

真实气体状态方程都涉及到物性常数,方程的通用性受到了限制。

在实际工作中,当研究的物质其热力学性质既没有足够的实验数据,又没有状态方程中固有的参数时,计算便会产生困难,因此十分需要研究能用于真实气体的普遍化方法。

2.3.1对比态原理

对比态原理认为,在相同的对比状态下,所有的物质表现出相同的性质。

vanderWaals提出的简单对比态原理方程是:

简单对应状态原理就是两参数对应状态原理,表述为:

对于不同的流体,当具有相同的对比温度和对比压力时,则具有大致相同的压缩因子。

并且其偏离理想气体的程度相同。

这种简单对比态原理对应简单流体(如氩、氪、氙)是非常准确的。

这就是二参数压缩因子图的依据。

只有在各种气体的临界压缩因子Zc相等的条件下,简单对比态原理才能严格成立。

而临界压缩因子Zc在0.2~0.3范围内变动,并不是一个常数。

可见,范德华提出的简单对比态原理只是一个近似的关系,只适用于球形非极性的简单分子。

拓宽对比态原理的应用范围和提高计算精度的有效方法是在简单对比态原理(二参数对比态原理)的关系式中引入第三参数。

2.3.2三参数对比态原理

z=f(Tr,Pr,第三参数)

第三参数的特性:

最灵敏反映物质分子间相互作用力的物性参数,当分子间的作用力稍有不同,就有明显的变化。

1955年,K.S.Pitzer提出了以偏心因子作为第三因子的关系式:

z=f(Tr,Pr,ω)。

把压缩因子看作是对比温度、对比压力和偏心因子的函数。

纯物质的偏心因子是根据物质的蒸气压来定义的:

对于不同的流体,α具有不同的值。

但简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过Tr=0.7,logprs=−1这一点。

对于给定流体对比蒸气压曲线的位置,用在Tr=0.7的流体与氩、氪、氙(简单球形分子)的logprs值之差来表征。

Pitzer把这一差值定义为偏心因子ω,即ω=−logprs−1.00(Tr=0.7)

因此,任何流体的ω值均可由该流体的临界温度Tc、临界压力pc值及Tr=0.7时的饱和蒸气压ps来确定。

氩、氪、氙这类简单球形流体的ω=0,而非球形流体的ω表征物质分子的偏心度,即非球形分子偏离球对称的程度。

根据以上结论,Pitzer提出了两个非常有用的普遍化关系式:

1、压缩因子的多项式表示的普遍化关系式(简称普压法)

2、两项维里系数表示的普遍化关系式(简称为普维法)

2.3.3普遍化压缩因子图法

对于所有相同的流体,若处在相同的Tr和pr下,其压缩因子必定相等。

Z(0)——简单流体的压缩因子

Z

(1)——研究流体相对于简单流体的偏差

Z(0)和Z

(1)的都是Tr和pr的复杂函数,计算时可直接查图

Pitzer关系式对于非极性或弱极性的气体能够提供可靠的结果,误差<3%,应用于极性气体时,误差要增大到5%~10%,而对于缔合气体和量子气体,使用时应当更加注意。

2.3.4普遍化第二virial系数法

所谓普遍化状态方程是指用对比参数Tr、pr、Vr代替变量T、p、V,消去状态方程中反映气体特性的常数,适用于任何气体的状态方程。

 

两种普遍化方法适用范围:

2.4真实气体混合物的P-V-T关系

在化工生产和计算中,处理的物系大都是多组分的真实气体混合物。

混合物的实验数据更少,为了满足工程设计计算的需要,必须求助于计算、关联甚至估算的方法,用纯物质的p–V–T关系预测或推算混合物的性质。

气体的p–V-T关系可以概括为:

φ(p,V,T,x)=0

研究思路

1)状态方程是针对纯物质提出的;

2)把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,然后代入纯物质的状态方程计算混合物的性质;

3)混合物的虚拟特征参数是纯物质参数项和组成的函数,即混合规则:

4)混合规则是计算混合物性质中最关键的一步。

2.4.1虚拟临界参数法和Kay规则

如果用对应状态原理处理气体混合物的p–V-T关系,就必须涉及到如何解决混合物的临界性质问题。

可以将混合物视为假想的纯物质,将虚拟纯物质的临界参数称作虚拟临界参数。

这样便可以把适用于纯物质的对比态方法应用到混合物上。

最简单的是Kay规则。

该规则将混合物的虚拟临界参数表示成:

式中Tpm,ppm分别称为虚拟临界温度与虚拟临界压力。

Tci,pci分别表示混合物中i组元的临界温度和临界压力,yi为i组元在混合物中的摩尔分率。

注意,虚拟临界温度与虚拟临界压力并不是混合物真实的临界参数,它们仅仅是数学上的参数,为了使用纯物质的p–V-T关系进行计算时采用的参数,没有任何物理意义。

混合物中所有组分的临界温度和临界压力之比在以下范围内:

Kay规则与其他较复杂的规则相比,所得数值的差别不到2%。

Prausnitz-Gunn提出一个简单的改进规则,将Tpm仍用Kay规则,ppm表示为:

 

以上几个式子表示的混合规则都没有涉及到组元间的相互作用参数。

因此,这些混合规则均不能真正反映混合物的性质。

对于组分差别很大的混合物,尤其对于具有极性组元的系统以及可以缔合为二聚物的系统均不适用。

2.4.2气体混合物的第二Virial系数

维里方程是一个理论型方程,其中维里系数反映分子间的交互作用,如第二维里系数B反映两个分子间的交互作用。

对于纯气体,仅有同一种分子间的交互作用,但对于混合物而言,第二维里系数B不仅要反映相同分子之间的相互作用,同时还要反映不同类型的两个分子交互作用的影响。

由统计力学可以导出气体混合物的第二Virial系数为:

当i≠j时,Bij为交叉第二Virial系数,且Bij=Bji。

i=j时为纯组分i的第二Virial系数。

对二元混合物:

B12代表混合物性质,称为交叉第二维里系数,用以下经验式计算。

式中,B(0)和B

(1)是对比温度Tr的函数。

Prausnitz对计算各临界参数提出如下的混合规则:

式中,kij称为二元交互作用参数。

不同分子的交互作用很自然地会影响混合物的性质,若存在极性分子时,影响更大。

因此,人们对于kij极为关注。

但至今尚未得到一个计算kij的通用关联式,一般通过实验的p–V–T数据或相平衡数据拟合得到。

kij的数值与组成混合物的物质有关,一般在0~0.2之间。

在近似计算中,kij可以取作为零。

用普遍化第二维里系数计算气体混合物压缩因子的步骤是:

计算纯物质普遍化第二维里系数,再计算各个交互临界参数,计算交叉第二维里系数,然后计算混合物的BM,最后用下式计算混合物的压缩因子。

可见,气体混合物压缩因子的计算包括许多步骤,但每个步骤都非常方便地可以编成计算机程序完成。

2.4.3气体混合物的立方型状态方程

若将气体混合物虚拟为一种纯物质,就可以将纯物质的状态方程应用于气体混合物的p-V-T计算中。

不同的状态方程当用于混合物p-V-T计算时应采用不同的混合规则,一个状态方程也可使用不同的混合规则。

大多数状态方程均采用经验的混合规则,混合规则的优劣只能由实践来检验。

立方型状态方程(vanderWaals,RK,RKS,PR方程)用于混合物时,方程中参数a和b常采用以下的混合规则:

同样,对于二元混合物,应写为:

bi是纯组分的参数,没有b的交叉项;aij既包括纯组分参数(i=j),也包括交叉项i≠j。

交叉项aij按下式计算:

Kij为经验的二元相互作用参数,一般从混合物的实验数据拟合得到,对组分性质相近的混合物或近似计算可取Kij=0

Prausnitz等人建议用下式计算交叉项aij

通过计算得到混合物参数aM,bM后,就可以利用立方型状态方程计算混合物的p–V-T关系和其他热力学性质了。

状态方程混合规则是气液两相均适用,但用于液相可靠性较差;

当计算混合物性质时,使用不同的状态方程,应采用不同的混合规则,计算不同的虚拟特征参数。

使用的状态方程类型

计算的虚拟特征参数

普遍化关系式

普遍化压缩因子图法

式(2-47)、(2-48)计算虚拟临界参数Tpc、Ppc

普遍化virial系数法

Virial方程

式(2-50)至(2-53)计算气体混合物的第二virial系数BM

立方型状态方程

式(2-55)至(2-58)计算气体混合物立方型状态方程参数am,bm

2.5液体的P-V-T关系

前面已经讨论的p–V-T关系如RKS方程、PR方程及BWR方程都可以用到液相区,但事实上还有许多状态方程只能较好地说明气体的p–V-T关系,不适用于液体,当应用到液相区时会产生较大的误差。

这是由于液体的p–V-T关系较复杂,对液体理论的研究远不如对气体研究深入。

但是,与气体相比,液体的摩尔体积容易测定。

除临界区外,温度(特别是压力)对液体容积性质的影响不大。

除状态方程外,工程上还常常选用经验关系式和普遍化关系式等方法来估算。

2.5.1饱和液体摩尔体积

Rackett方程

修正的Rackett方程

Vsl是饱和液体的摩尔容积;ZRA值可查阅文献,或用下式估算

2.5.2液体摩尔体积

Lyderson等提出了一个估算液体体积的普遍化方法。

2.6状态方程的比较、选用和应用

每一个方程的特点和适用范围,见p.24表2-1.

作为工程师和设计人员得主要任务就是根据对精度的要求来选择状态方程。

注意每一个方程的特点和适用范围。

状态方程精度粗略评价:

多参数状态方程>立方型状态方程>两项截断维里方程>理想气体状态方程。

立方型状态方程中:

PR>SRK>RK>vdW

1)若计算液体体积,则直接用修正的Rackett方程既简单精度又高,不需要用立方型状态方程来计算;

2)若计算气体体积。

SRK,PR是大多数流体的首选,无论压力、温度、极性如何,它们能基本满足计算简单。

精度较高的要求,因此在工业上已广泛使用。

对于个别流体或精度要求特别高的,则需要使用对应的专用状态方程或多参数状态方程,如对于CO2、H2S和N2首选BWRS方程;

在没有计算机软件又需要快速估算的情况下,精度要求非常低的可用理想气体状态方程,精度要求稍高可以使用普遍化方法。

K28779706B火283336EAD溭

243995F4F彏b2707869C6槆}b394959A47驇R274406B30欰37178913A鄺

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 文学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1