第5章系统稳定性分析.ppt

上传人:b****9 文档编号:98509 上传时间:2022-10-03 格式:PPT 页数:119 大小:4.93MB
下载 相关 举报
第5章系统稳定性分析.ppt_第1页
第1页 / 共119页
第5章系统稳定性分析.ppt_第2页
第2页 / 共119页
第5章系统稳定性分析.ppt_第3页
第3页 / 共119页
第5章系统稳定性分析.ppt_第4页
第4页 / 共119页
第5章系统稳定性分析.ppt_第5页
第5页 / 共119页
点击查看更多>>
下载资源
资源描述

第5章系统稳定性分析.ppt

《第5章系统稳定性分析.ppt》由会员分享,可在线阅读,更多相关《第5章系统稳定性分析.ppt(119页珍藏版)》请在冰豆网上搜索。

第5章系统稳定性分析.ppt

主讲人:

董惠娟,机电工程学院,机械类专业技术基础课,2013年5月,2,教学内容,第6章系统稳态误差分析和计算,第1章绪论,第3章系统的时域分析法,第2章系统的数学模型,第4章系统的频域分析法,第5章系统稳定性分析,第8章计算机控制系统,第7章系统的设计与校正,5.1系统稳定性的基本概念5.2系统稳定的充要条件5.3代数稳定判据(Routh判据和Hurwitz判据)5.4奈奎斯特稳定判据(Nyquist判据)5.5应用奈奎斯特判据分析延时系统稳定性5.6由伯德图判断系统的稳定性5.7控制系统的相对稳定性,哈尔滨工业大学机电工程学院,本章目录,2.闭环控制系统的稳定性问题,1.单摆,系统受扰动后能否恢复原来的状态?

5.1系统稳定性的基本概念,单摆,倒立摆,定义:

系统在初始状态作用下,5,无输入时的初态输入引起的初态,输出(响应),收敛(回复平衡位置)发散(偏离越来越大),系统稳定系统不稳定,结论:

系统是否稳定,取决于系统自身的结构参数,与输入无关,反馈削弱偏差,则稳定反馈加强偏差,则不稳定,稳定性是指自由响应的收敛性,若系统存在反馈,5.1系统稳定性的基本概念,5.1系统稳定性的基本概念,如上图,系统的输入是什么?

机械系统的表现是什么?

5.1系统稳定性的基本概念,5.1系统稳定性的基本概念,5.2系统稳定性的充要条件,N(s)到Xo(s)的传递函数,Xi(s),设输入Xi(s)=0,则,设n(t)为单位脉冲函数,5.2系统稳定性的充要条件,闭环特征方程F(s)=0,问题:

已知系统的开环传递函数,是否可以写出闭环特征方程?

开环极点和闭环特征方程的根哪一个更容易求解?

5.2系统稳定性的充要条件,控制系统稳定性的充分必要条件是:

闭环特征方程式的根全部具有负实部,系统特征根即闭环极点,故也可以说:

闭环传递函数的极点全部在s平面的左半平面,5.3劳斯稳定性判据代数判据,基于方程式的根与系数的关系设系统闭环特征方程为,s1,s2,sn为系统的特征根,将上式因式乘开,可求得根与系数的关系,5.3劳斯稳定性判据代数判据,要使全部特征根均具有负实部,必须满足:

(1)特征方程的各项系数ai0(i=0,1,2,n)

(2)特征方程的各项系数的符号都相同ai一般取正值,则上述两条件简化为ai0必要条件,5.3劳斯稳定性判据代数判据,充要条件:

如果“劳斯判据”中第一列所有项均为正,则系统稳定。

劳斯阵列:

5.3劳斯稳定性判据代数判据,其中:

劳斯判据还说明,实部为正的特征根数,等于劳斯阵列中第一列的系数符号改变的次数。

5.3劳斯稳定性判据代数判据,一撇一捺除以左下脚,例5-1设控制系统的特征方程式为:

试应用劳斯稳定判据判断系统的稳定性。

解:

首先,由方程系数均为正可知已满足稳定的必要条件。

其次,排劳斯阵列:

劳斯阵列第一列中系数符号全为正,所以控制系统稳定。

5.3劳斯稳定性判据代数判据,例题5-1,情形1:

第一列没有零元素,例5-2设控制系统的特征方程式为:

试应用劳斯稳定判据判断系统的稳定性。

解:

由方程系数均为正可知已满足稳定的必要条件。

其次,排劳斯阵列:

第一列系数改变符号2次,闭环系统的根中有两个实部为正,控制系统不稳定。

5.3劳斯稳定性判据代数判据,例题5-2,对于特征方程阶次低(n3)的系统,劳斯判据可简化为:

二阶系统特征式为,劳斯表为,故二阶系统稳定性的充要条件是:

5.3劳斯稳定性判据代数判据,三阶系统特征式为,劳斯表为:

故三阶系统稳定性的充要条件是:

5.3劳斯稳定性判据代数判据,例5-3设某反馈控制系统如下图所示,试计算使系统稳定的K值范围。

解:

系统的传递函数为,特征方程?

5.3劳斯稳定性判据代数判据,例题5-3,特征方程为,根据三阶系统稳定的充要条件,可知使系统稳定需满足,故使系统稳定的K值范围为0K6,5.3劳斯稳定性判据代数判据,例5-4设控制系统的闭环特征方程式为:

应用劳斯稳定判断系统的稳定性。

解:

劳斯阵列表为,第一列系数改变符号2次,2个正实根。

5.3劳斯稳定性判据代数判据,例题5-4,情形2:

首列有零元素,且零元素所在的行存在非零元素,例5-5设控制系统的闭环特征方程式为:

应用劳斯稳定判断系统的稳定性。

解:

劳斯阵列表为,无正实根,有虚根。

临界稳定,5.3劳斯稳定性判据代数判据,例题5-5,情形3:

首列有零元素,且零元素所在的行其他元素均为零,例5-6设控制系统的闭环特征方程式为:

应用劳斯稳定判断系统的稳定性。

解:

劳斯阵列表为,临界稳定,5.3劳斯稳定性判据代数判据,例题5-6,代数稳定判据使用的多项式是系统闭环特征多项式。

劳斯判据的不足:

定性不能从量上判断系统的稳定性;对含有延迟环节的系统无效;不能对改善系统的稳定性给出提示。

5.3劳斯稳定性判据代数判据,5.4乃(奈)奎斯特稳定性判据(Nyquist),利用开环系统乃奎斯特图(极坐标图)来判断系统闭环后的稳定性。

(几何判据),某些环节传递函数无法分析列写,通过实验获得系统开环频率特性曲线;奈氏判据可以解决代数判据不能解决的问题:

如包含延迟环节的系统稳定性问题。

能定量指出系统的稳定储备,以及提高动态性能(包括稳定性)的途径。

几何判据,系统Nyquist图(极坐标图),频率响应是输入频率的复变函数,是一种变换,当从-增长至时,作为一个矢量,其端点在复平面相对应的轨迹就是频率响应的极坐标图,亦称乃氏图(乃奎斯特Nyquist曲线)。

5.4乃奎斯特稳定性判据(Nyquist),频率响应描述了系统对正弦输入的稳态响应,问题:

对于任何多项式都可以作极坐标图?

Nyquist图?

Nyquist图步骤:

写出|G(j)|和G(j)表达式;分别求出=0和时的G(j);求乃氏图与实轴的交点,交点可利用ImG(j)=0的关系式求出,也可以利用关系式G(j)=n180(其中n为整数)求出;求乃氏图与虚轴的交点,交点可利用ReG(j)=0的关系式求出,也可以利用关系式G(j)=n90(其中n为奇数)求出;必要时画出乃氏图中间几点;勾画大致曲线=-0,关于实轴对称,5.4乃奎斯特稳定性判据(Nyquist),s1=zpk(,-10-20,8000)nyquist(s1);,matlab,s1=tf(40,0.0050.151)nyquist(s1);,30,其中N1(s),D1(s),N2(s),D2(s)均为s的多项式。

5.4Nyquist稳定性判据,开环传递函数:

闭环传递函数:

问题:

已知开环传递函数,是否可以直接给出闭环传递函数?

为什么要引入开环极点?

开环极点和闭环极点数量相同吗?

为什么?

哪一个更容易求解?

闭环特征方程:

5.4Nyquist稳定性判据,闭环特征多项式F(s)零/极点、开环传递函数的零/极点、闭环传递函数的零/极点、闭环特征方程的根之间的关系,问题:

已知开环传递函数,是否可以直接给出闭环特征方程和闭环特征多项式?

引入闭环特征方程和闭环特征多项式的作用?

闭环特征多项式:

5.4Nyquist稳定性判据,系统稳定的充要条件是闭环传函GB(s)的全部极点均具有负实部,即,F(s)函数的全部零点均须具有负实部。

即,闭环特征方程F(s)的特征根全部具有负实部,闭环特征方程F(s)与开环、闭环的传递函数零点和极点的关系,由H.Nyquist于1932年提出的稳定判据,在1940年后得到了广泛应用。

利用开环系统乃奎斯特图(极坐标图),来判断系统闭环后的稳定性,是一种几何判据。

Nyquist将与联系起来,利用开环频率特性判断闭环系统的稳定性,而无需实际求出闭环极点。

5.4乃奎斯特稳定性判据(Nyquist),米哈伊洛夫()定理米哈伊洛夫定理-证明乃奎斯特稳定性判据的一个引理,其表述为:

设n次多项式D(s)有p个零点(特征根)位于复平面的右半面,有q个零点(特征根)在原点上,其余n-p-q个零点位于左半面,则当以s=j代入D(s)并令从-连续增大到时,D(j)的角增量等于,5.4Nyquist稳定性判据,角增量对应极坐标图的角度变化量?

证明

(1)设s1为负实根,对于矢量(s-s1),当s=j变化时,5.4Nyquist稳定性判据,

(2)设sm为正实根,对于矢量(s-sm),当s=j变化时,什么是当时频率响应G(j)=(j-s1)的角增量?

5.4Nyquist稳定性判据,(3)设s2、s3为具有负实部的共轭复根,s2=-a+jb(a0,b0)s3=-a-jb对于矢量(s-s2)和(s-s3),当s=j变化时,5.4Nyquist稳定性判据,(4)设sm+1、sm+2为具有正实部的共轭复根,sm+1=c+jd(c0,d0)sm+2=c-jd,对于矢量(s-sm+1)和(s-sm+2),当s=j变化时,另外,原点根不引起角变化量。

5.4Nyquist稳定性判据,如果n次多项式D(s)有p个根在右半平面,q个在原点,其余(n-p-q)个在s左半面,则,5.4Nyquist稳定性判据,如何知道闭环特征多项式F(j)相对原点的角变化量?

闭环特征多项式F(j)和G(j)H(j)的角变化量的关系,闭环特征多项式:

已知:

判断闭环稳定性,即,

(1)如果n个开环极点均在s左半平面,则根据米哈伊洛夫定理,5.4Nyquist稳定性判据,设开环极点均在s左半平面,且当从-到变化时,F(j)的乃氏图相对原点的角变化量为零,则系统闭环后稳定。

且F(j)的乃氏图相对原点的角变化量,所以:

F(s)=1+G(s)H(s)与G(s)H(s)的乃氏图差向量(-1,j0),5.4Nyquist稳定性判据,设开环极点均在左半平面,且当从-到变化时,开环系统G(j)H(j)乃氏图相对(-1,j0)点的角变化量为零时,系统闭环后稳定。

乃奎斯特稳定判据表述一:

设开环极点均在左半平面,且当从-到变化时,系统开环乃氏图不包围(-1,j0)点时,系统闭环后稳定。

(2)如果n个开环极点中p个在s右半平面,原点没有极点,其余(n-p)个在s左半面,则根据米哈伊洛夫定理推论:

5.4Nyquist稳定性判据,设n个开环极点p个在右半平面,其余在左半平面,F(j)的乃氏图原点p圈,则系统闭环后稳定。

且F(j)的乃氏图相对原点的角变化量为,所以:

5.4Nyquist稳定性判据,设开环特征多项式在右半平面有p个零点(开环极点p个),没有原点根,则开环乃氏图,当从-到变化时,其相对(-1,j0)点的角变化量为时,系统闭环稳定。

乃奎斯特稳定判据表述二:

如果开环传递函数的Nyquist图逆时针包围(1,j0)点的圈数(角增量)等于开环右极点的个数,则闭环系统稳定。

闭环稳定的充要条件,问题:

特征多项式F(s)的作用?

开环传递函数,判断闭环稳定性。

的幅值和相角,例题5-7,该乃氏图随着频率的增加,幅值减小的意义?

频率为3.2rad/s的意义?

频率为0.76rad/s,幅值为79.6,相角为-41度的意义?

该对数频率特性图在零分贝以下的频率是多少?

为什么从0到时,针对该系统,乃氏图相角为负?

该系统由两个惯性环节组成,哪一个时间滞后较多?

在s平面上的一点,必定在F(s)平面上对应一点,称为点映射。

例题5-8,5.4.1映射定理-证明乃氏判据的另一方法,问题:

为什么引入两个复平面,s平面和F(s)平面?

他们的关系?

5.4.1映射定理(围线映射)(保角映射),为什么称为围线映射,保角映射?

如果封闭曲线包围两个零点,映射到F(s)平面的像曲线包围原点的周数?

角增量?

和利用闭环特征多项式判稳定性的关系?

映射定理(柯西幅角定理)(相角原理),s平面上不通过F(s)任何零、极点的任意封闭曲线s,包围s平面上F(s)的z个零点和p个极点。

当s以顺时针方向沿封闭曲线s移动1周时,在F(s)平面映射的封闭曲线F将顺时针方向绕原点旋转n=z-p圈。

若n为正,表示F顺时针运动

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1