费马大定理.docx

上传人:b****7 文档编号:9837723 上传时间:2023-02-06 格式:DOCX 页数:28 大小:43.03KB
下载 相关 举报
费马大定理.docx_第1页
第1页 / 共28页
费马大定理.docx_第2页
第2页 / 共28页
费马大定理.docx_第3页
第3页 / 共28页
费马大定理.docx_第4页
第4页 / 共28页
费马大定理.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

费马大定理.docx

《费马大定理.docx》由会员分享,可在线阅读,更多相关《费马大定理.docx(28页珍藏版)》请在冰豆网上搜索。

费马大定理.docx

费马大定理

费马大定理

百科名片

  

费马

费马大定理:

当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n.无正整数解。

目录

原理简介

理论发展

1.发现

2.奖励

3.有限组互质

4.GerhardFrey

5.怀尔斯和泰勒

6.怀尔斯

7.n=3

8.n=4

9.n=5

10.n=7

11.对于所有小于100的素指数n

12.谷山——志村猜想

13.谷山——志村猜想和费马大定理之间的关系

14.弗雷命题

15.谷山——志村猜想”成立

16.n<1,000,000

理论发展

证明方法

1.正式发表

2.扩展证明费马大定理:

应用实例

原理简介

理论发展

1.发现

2.奖励

3.有限组互质

4.GerhardFrey

5.怀尔斯和泰勒

6.怀尔斯

7.n=3

8.n=4

9.n=5

10.n=7

11.对于所有小于100的素指数n

12.谷山——志村猜想

13.谷山——志村猜想和费马大定理之间的关系

14.弗雷命题

15.谷山——志村猜想”成立

16.n<1,000,000

理论发展

证明方法

1.正式发表

2.扩展证明费马大定理:

应用实例

展开

编辑本段原理简介

  

  

费马大定理

这个定理,本来又称费马最后的定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。

虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。

证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。

而安德鲁·怀尔斯(AndrewWiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

编辑本段理论发展

发现

  费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:

“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。

关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。

”(拉丁文原文:

"Cuiusreidemonstrationemmirabilemsanedetexi.Hancmarginisexiguitasnoncaperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。

数学家们的有关工作丰富了数论的内容,推动了数论的发展。

  对很多不同的n,费马定理早被证明了。

但数学家对一般情况在首二百年内仍对费马大定理一筹莫展。

奖励

  德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。

在一战之后,马克大幅贬值,该定理的魅力也大大地下降。

  莫德尔猜想

  1983年,联邦德国数学家伐尔廷斯证明了莫德尔猜想,从而翻开了费马大定理研究的新篇章.获得1982年菲尔兹奖

  伐尔廷斯于1954年7月28日生于联邦德国的杰尔森柯琛,并在那里渡过了学生时代,而后就学于内斯涛德教授门下学习数学.1978年获得博士学位.他作过研究员、助教,现在是乌珀塔尔的教授.他在数学上的兴趣开始于交换代数,以后转向代数几何.

  1922年,英国数学家莫德尔提出一个著名猜想,人们叫做莫德尔猜想.按其最初形式,这个猜想是说,任一不可约、有理系数的二元多项式,当它的“亏格”大于或等于2时,最多只有有限个解.记这个多项式为f(x,y),猜想便表示:

最多存在有限对数偶xi,yi∈Q,使得f(xi,yi)=0.

  后来,人们把猜想扩充到定义在任意数域上的多项式,并且随着抽象代数几何的出现,又重新用代数曲线来叙述这个猜想了.因此,伐尔廷斯实际上证明的是:

任意定义在数域K上,亏格大于或等于2的代数曲线最多只有有限个K一点.

  数学家对这个猜想给出各种评论,总的看来是消极的. 1979年利奔波姆说:

“可以有充分理由认为,莫德尔猜想的获证似乎还是遥远的事.”

  对于“猜想”,1980年威尔批评说:

“数学家常常自言自语道:

要是某某东西成立的话,‘这就太棒了’(或者‘这就太顺利了’).有时不用费多少事就能够证实他的推测,有时则很快否定了它.但是,如果经过一段时间的努力还是不能证实他的预测,那么他就要说到‘猜想’这个词,既便这个东西对他来说毫无重要性可言.绝大多数情形都是没有经过深思熟虑的。

”因此,对莫德尔猜想,他指出:

我们稍许来看一下“莫德尔猜想”.它所涉及的是一个算术家几乎不会不提出的问题;因而人们得不到对这个问题应该去押对还是押错的任何严肃的启示.

  然而,时隔不久,1983年伐尔廷斯证明了莫德尔猜想,人们对它有了全新的看法.在伐尔廷斯的文章里,还同时解决了另外两个重要猜想,即台特和沙伐尔维奇猜想,它们同莫德尔猜想具有同等重大意义.

  这里主要解释一下莫德尔猜想,至于证明就不多讲了. 所谓代数曲线,粗略一点说,就是在包含K的任意域中,f(x,y)=0的全部解的集合.

  令F(x,y,z)为d次齐次多项式,其中d为f(x,y)的次数,并使F(x,y,1)=f(x,y),那么f(x,y)的亏格g为

  g≥(d-1)(d-2)/2

  当f(x,y)没有奇点时取等号.

  费马多项式x^n+y^n-1没有奇点,其亏格为(n-1)(n-2)/2.当n≥4时,费马多项式满足猜想的条件.因此,xn+yn=zn最多只有有限多个整数解.

  为什么猜想中除去了f(x,y)的亏格为0或1的情形,即除去了f(x,y)的次数d小于或等于3的情形呢?

我们说明它的理由.

  d=1时,f(x,y)=ax+by+c显然有无穷多个解.

  d=2时,f(x,y)可能没有解,例如f(x,y)=x2+y2+1;但是如果它有一个解,那么必定有无穷多个解.我们从几何上来论证这一点.设P是f(x,y)解集合中的一点,令l表示一条不经过点P的直线(见上图).对l上坐标在域K中的点Q,直线PQ通常总与解集合交于另一点R.当Q在l上取遍无穷多个K—点时,点R的集合就是f(x,y)的K—解的无穷集合.例如把这种方法用于x2+y2-1,给出了熟知的参数化解:

  当F(X,Y,Z)为三次非奇异(即无奇点)曲线时,其解集合是一个所谓椭圆曲线.我们可用几何方法做出一个解的无穷集.但是,对于次数大于或等于4的非奇异曲线F,这种几何方法是不存在的.虽然如此,却存在称为阿贝尔簇的高维代数簇.研究这些阿贝尔簇构成了伐尔廷斯证明的核心.

  伐尔廷斯在证明莫德尔猜想时,使用了沙伐尔维奇猜想、雅可比簇、高、同源和台特猜想等大量代数几何知识. 莫德尔猜想有着广泛的应用.比如,在伐尔廷斯以前,人们不知道,对于任意的非零整数a,方程y2=x5+a在Q中只有有限个

有限组互质

  1983年,en:

GerdFaltings证明了Mordell猜测,从而得出当n>2时(n为整数),只存在有限组互质的a,b,c使得a^n+b^n=c*n。

GerhardFrey

  1986年,GerhardFrey提出了“ε-猜想”:

若存在a,b,c使得a^n+b^n=c^n,即如果费马大定理是错的,则椭圆曲线y^2=x(x-a^n)(x+b^n)会是谷山-志村猜想的一个反例。

Frey的猜想随即被KennethRibet证实。

此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。

怀尔斯和泰勒

  1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。

怀尔斯

  怀尔斯证明费马大定理的过程亦甚具戏剧性。

他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。

但在审批证明的过程中,专家发现了一个极严重的错误。

怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。

他们的证明刊在1995年的数学年刊(en:

AnnalsofMathematics)之上。

n=3

  欧拉证明了n=3的情形,用的是唯一因子分解定理。

n=4

  费马自己证明了n=4的情形。

n=5

  1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。

n=7

  1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧妙工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。

对于所有小于100的素指数n

  库默尔在1844年提出了“理想数”概念,他证明了:

对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。

谷山——志村猜想

  1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:

有理数域上的椭圆曲线都是模曲线。

这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。

谷山——志村猜想和费马大定理之间的关系

  1985年,德国数学家弗雷指出了谷山——志村猜想”和费马大定理之间的关系;他提出了一个命题:

假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。

尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。

但当时他没有严格证明他的命题。

弗雷命题

  1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。

谷山——志村猜想”成立

  1993年6月,英国数学家维尔斯证明了:

对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。

由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理”。

n<1,000,000

  至1991年对费马大定理指数n<1,000,000费马大定理已被证明,但对指数n>1,000,000没有被证明.已成为世界数学难题。

编辑本段理论发展

  1676年数学家根据费马的少量提示用无穷递降法证明n=4。

1678年和1738年德国数学家莱布尼兹和瑞士数学家欧拉也各自证明n=4。

1770年欧拉证明n=3。

1823年和1825年法国数学家勒让德和德国数学家狄利克雷先后证明n=5。

1832年狄利克雷试图证明n=7,却只证明了n=14。

1839年法国数学家拉梅证明了n=7,随后得到法国数学家勒贝格的简化……19世纪贡献最大的是德国数学家库麦尔,他从1844年起花费20多年时间,创立了理想数理论,为代数数论奠下基础;库麦尔证明当n<100时除37、59、67三数外费马大定理均成立。

为推进费马大定理的证明,布鲁塞尔和巴黎科学院数次设奖。

1908年德国数学家佛尔夫斯克尔临终在哥廷根皇家科学会悬赏10万马克,并充分考虑到证明的艰巨性,将期限定为100年。

数学迷们对此趋之若鹜,纷纷把“证明”寄给数学家,期望凭短短几页初等变换夺取桂冠。

德国数学家兰道印制了一批明信片由学生填写:

“亲爱的先生或女士:

您对费马大定理的证明已经收到,现予退回,第一个错误出现在第_页第_行。

”在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。

1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。

据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。

“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。

”数学家就是这样缓慢而执着地向前迈进,直至1955年证明n<4002。

大型计算机的出现推进了证明速度,1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。

但数学是严谨的科学,n值再大依然有限,从有限到无穷的距离漫长而遥远。

1983年,年仅29岁的德国数学家法尔廷斯证明了代数几何中的莫德尔猜想,为此在第20届国际数学家大会上荣获菲尔茨奖;此奖相当于数学界的诺贝尔奖,只授予40岁以下的青年数学家。

莫德尔猜想有一个直接推论:

对于形如x^n+y^n=z^n(n≥4)的方程至多只有有限多组整数解。

这对费马大定理的证明是一个有益的突破。

从“有限多组”到“一组没有”还有很大差距,但从无限到有限已前进了一大步。

1955年日本数学家谷山丰提出过一个属于代数几何范畴的谷山猜想,德国数学家弗雷在1985年指出:

如果费马大定理不成立,谷山猜想也不成立。

随后德国数学家佩尔提出佩尔猜想,补足了弗雷观点的缺陷。

至此,如果谷山猜想和佩尔猜想都被证明,费马大定理不证自明。

事隔一载,美国加利福尼亚大学伯克利分校数学家里比特证明了佩尔猜想。

1993年6月,英国数学家、美国普林斯顿大学教授安德鲁·怀尔斯在剑桥大学牛顿数学研究所举行了一系列代数几何学术讲演。

在6月23日最后一次讲演《椭圆曲线、模型式和伽罗瓦表示》中,怀尔斯部分证明了谷山猜想。

所谓部分证明,是指怀尔斯证明了谷山猜想对于半稳定的椭圆曲线成立——谢天谢地,与费马大定理相关的那条椭圆曲线恰好是半稳定的!

这时在座60多位知名数学家意识到,困扰数学界三个半世纪的费马大定理被证明了!

这一消息在讲演后不胫而走,许多大学都举行了游行和狂欢,在芝加哥甚至出动了警察上街维持秩序。

但专家对他的证明审察发现有漏洞,于是,怀尔斯又经过了一年多的拼搏,于1994年9月20日上午11时彻底圆满证明了“费马大定理”。

编辑本段证明方法

  五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。

在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。

正式发表

  这个结论由威利斯在1993年的6月21日于美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。

不过怀尔斯的证明马上被检验出有少许的瑕疵,于是怀尔斯与他的学生又花了十四个月的时间再加以修正。

1994年9月19日他们终于交出完整无瑕的解答,数学界的梦魇终於结束。

1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。

当年的十万马克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。

  用不定方程来表示,费马大定理即:

当n>2时,不定方程x^n+y^n=z^n没有xyz≠0的整数解。

为了证明这个结果,只需证明方程x^4+y^4=z^4,(x,y)=1和方程x^p+y^p=z^p,(x,y)=(x,z)=(y,z)=1[p是一个奇素数]均无xyz≠0的整数解。

  费马本人证明了p=4的情况,但证明不完全,后由欧拉完善。

n=3的情形已由莱布尼茨和欧拉解决。

勒让德[1823]和狄利克雷[1825]证明了p=5的情形。

1839年,拉梅证明了p=7的情形。

1847年,德国数学家库默尔对费马猜想作出了突破性的工作。

他创立了理想数论,这使得他证明了当p<100时,除了p=37,59,67这三个数以外,费马猜想都成立。

后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。

在近代数学家中,范迪维尔对费马猜想作出重要贡献。

他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。

在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。

他和另外两位数学家共同证明了当p<4002时费马猜想成立。

  现代数学家还利用大型电子计算器来探索费马猜想,使p的数目有很大的推进。

到1977年为止,瓦格斯塔夫证明了p<125000时,费马猜想成立。

《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:

格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。

即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则证明中用到了法尔廷斯[Faltings]的结果。

另外一个重要结果是:

费马猜想若有反例,即存在x>0,y>0,z>0,n>2,使x^n+y^n=z^n,则x>101,800,000。

扩展证明费马大定理:

  证明:

  m,n属于非负整数,x,y,z是正整数。

j表示“奇数”,k=2^(m+1)j表示“偶数”。

  按奇数与偶数的加法形式讨论费马方程:

  1)偶数+偶数:

  k1^n+k2^n=k3^n

  2^n2^m1nj1^n+2^n2^m2nj2^n=2^n2^m3nj3^n

  2^m1nj1^n+2^m2nj2^n=2^m3nj3^n

  等式两边同时除以min(2^m1n,2^m2n,2^m3n),又分七种情况:

  A)m1=m2=m3

  得:

j1^n+j2^n=j3^n,偶数=奇数,产生矛盾。

  B)仅m1=m2

  j1^n+j2^n=2^(m3-m1)nj3^n,

  令m4=m3-m1

  若m4<0

  j1^n+j2^n=[j3/2^(-m4)]^n, 

  [j3/2^(-m4)]^n为小数,j1^n+j2^n为整数,产生矛盾。

  可见,m4<0时,不成立。

  若m4>0,

  j1^n+j2^n=j3^n2^(m4)n,n>2

  若j3是j1^n与j2^n的公因数j1=j2=j3

  则有j4^n+j5^n=2^(m4)n——待证明

  2^(m4)n不是j1^n与j2^n的公因数

  j1^n/2^(m4)n+j2^n/2^(m4)n=j3^n

  若j1=j2

  则有2j1^n/2^(m4)n=j3^n

  奇数/偶数=奇数,产生矛盾,

  j1不等于j2

  奇数/2^n,为末尾为5的小数

  若要j1^n/2^(m4)n+j2^n/2^(m4)n等于整数,j1^n/2^(m4)n与j2^n/2^(m4)n的小数位数要相同

  j1/2^(m4)与j2/2^(m4)的小数位数也要相同

  通过计算观察,j1^n/2^(m4)n+j2^n/2^(m4)n要等于整数只能等于奇数,

  推出j3=奇数

  j1^n/2^(m4)n+j2^n/2^(m4)n=奇数

  j1^n/2^n+j2^n/2^n=奇数乘2^(m4-1)n

  奇数乘2^(m4-1)n不等于奇数,产生矛盾,

  可见,m1

  所以,仅m1=m2,j1^n+j2^n=j3^n2^(m4)n不成立。

  同理:

j4^n+j5^n=2^(m4)n不成立。

  C)再来看,仅m1=m3

  j1^n+2^(m2-m1)nj2^n=j3^n,

  令m4=m2-m1

  若m4<0

  j1^n+j2^n/2^(-m4)n=j3^n,

  j2^n/2^(-m4)n=j3^n-j1^n,

  j2^n/2^(-m4)n为小数,j3^n-j1^n为整数,产生矛盾,

  可见,m4<0时,不成立。

  若m4>0

  则j3^n-j1^n=j2^n2^m4n

  若j2是j1^n与j3^n的公因数

  则j5^n-j4^n=2^m4n——待证明

  2^(m4)n不是j3^n与j1^n的公因数

  j3^n/2^m4n-j1^n/2^m4n=j2^n

  若j3=j1

  则0=j2^n,产生矛盾,

  j1不等于j3

  j3^n/2^m4n-j1^n/2^m4n=j2^n

  奇数/2^n,为末尾为5的小数

  通过计算观察,j3^n/2^m4n-j1^n/2^m4n不等于整数,

  可见,m4>0时,不成立。

  所以,仅m1=m3时,j1^n+j2^n=j3^n2^(m4)n不成立。

  D)仅m2=m3,同上,不成立。

  E)

  min(m1,m2,m3)仅为m1,m2,m3中的一个:

  得:

j1^n+2^(m2-m1)nj2^n=2^(m3-m1)nj3^n

  奇数=偶数,产生矛盾。

  F)

  2^(m1-m2)nj1^n+j2^n=2^(m3-m2)nj3^n

  奇数=偶数,产生矛盾。

  G)

  2^(m1-m3)nj1^n+2^(m2-m3)nj2^n=j3^n

  偶数=奇数,产生矛盾。

  所以:

按奇数与偶数的加法形式讨论费马方程,偶数+偶数,不成立。

  2)奇数+奇数:

  j1^n+j2^n=k^n

  j1^n+j2^n=2^(m+1)nj3^n

  因为j1^n+j2^n=j3^n2^(m4)n不成立,

  所以:

j1^n+j2^n=2^(m+1)nj3^n不成立。

  3)奇数+偶数:

  j1^n+k^n=j2^n

  j2^n-j1^n=k^n

  j2^n–j1^n=2^n2^mnj3^n, 

  因为:

j3^n-j1^n=j2^n2^m4n不成立。

  所以:

j2^n–j1^n=2^n2^mnj3^n不成立。

  所以:

由1)2)3)可知,n>2,“费马大定理”在正整数范围内成立。

  同理:

应由1)2)3)可证,n>2,“费马大定理”在整数范围内成立。

编辑本段应用实例

  要证明费马最后定理是正确的

  (即x^n+y^n=z^n对n>2均无正整数解)

  只需证x^4+y^4=z^4和x^p+y^p=z^p(P为奇质数),都没有整数解。

  费马大定理证明过程:

  对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议。

本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1