高中数学常考题型答题技巧与方法及顺口溜.docx

上传人:b****7 文档编号:9803397 上传时间:2023-02-06 格式:DOCX 页数:9 大小:19.88KB
下载 相关 举报
高中数学常考题型答题技巧与方法及顺口溜.docx_第1页
第1页 / 共9页
高中数学常考题型答题技巧与方法及顺口溜.docx_第2页
第2页 / 共9页
高中数学常考题型答题技巧与方法及顺口溜.docx_第3页
第3页 / 共9页
高中数学常考题型答题技巧与方法及顺口溜.docx_第4页
第4页 / 共9页
高中数学常考题型答题技巧与方法及顺口溜.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

高中数学常考题型答题技巧与方法及顺口溜.docx

《高中数学常考题型答题技巧与方法及顺口溜.docx》由会员分享,可在线阅读,更多相关《高中数学常考题型答题技巧与方法及顺口溜.docx(9页珍藏版)》请在冰豆网上搜索。

高中数学常考题型答题技巧与方法及顺口溜.docx

高中数学常考题型答题技巧与方法及顺口溜

高中数学常考题型答题技巧与方法及顺口溜

  高中的数学学习主要目的是训练学生的思维能力!

对于很多数学成绩差的学生来说,学习数学就是一种折磨。

其实,数学在高中的科目中并不是最难的,只要找到正确的学习方法,学习起来就会比较轻松。

今天,小编给大家分享一位数学名师总结的基础知识顺口溜分享给大家,包含了整个高中数学的知识点,运用口诀的方法帮助学生进行记忆。

  高中数学重点知识全在这个顺口溜里,轻松掌握!

  数学思想方法总结

  中学数学一线牵,代数几何两珠连;

  三个基本记心间,四种能力非等闲。

  常规五法天天练,策略六项时时变,

  精研数学七思想,诱思导学乐无边。

  一线:

函数一条主线(贯穿教材始终)

  二珠:

代数、几何珠联璧合(注重知识交汇)

  三基:

方法(熟)知识(牢)技能(巧)

  四能力:

概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)

  五法:

换元法、配方法、待定系数法、分析法、归纳法。

  六策略:

以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。

  七思想:

函数方程最重要,分类整合常用到,

  数形结合千般好,化归转化离不了;

  有限自将无限描,或然终被必然表,

  特殊一般多辨证,知识交汇步步高。

  数学知识方法口诀

  集合与函数

  内容子交并补集,还有幂指对函数。

  性质奇偶与增减,观察图象最明显。

  复合函数式出现,性质乘法法则辨,

  若要详细证明它,还须将那定义抓。

  指数与对数函数,两者互为反函数。

  底数非1的正数,1两边增减变故。

  函数定义域好求。

分母不能等于0,

  偶次方根须非负,零和负数无对数;

  正切函数角不直,余切函数角不平;

  其余函数实数集,多种情况求交集。

  两个互为反函数,单调性质都相同;

  图象互为轴对称,Y=X是对称轴;

  求解非常有规律,反解换元定义域;

  反函数的定义域,原来函数的值域。

  幂函数性质易记,指数化既约分数;

  函数性质看指数,奇母奇子奇函数,

  奇母偶子偶函数,偶母非奇偶函数;

  图象第一象限内,函数增减看正负。

  三角函数

  三角函数是函数,象限符号坐标注。

  函数图象单位圆,周期奇偶增减现。

  同角关系很重要,化简证明都需要。

  正六边形顶点处,从上到下弦切割;

  中心记上数字1,连结顶点三角形;

  向下三角平方和,倒数关系是对角,

  顶点任意一函数,等于后面两根除。

  诱导公式就是好,负化正后大化小,

  变成税角好查表,化简证明少不了。

  二的一半整数倍,奇数化余偶不变,

  将其后者视锐角,符号原来函数判。

  两角和的余弦值,化为单角好求值,

  余弦积减正弦积,换角变形众公式。

  和差化积须同名,互余角度变名称。

  计算证明角先行,注意结构函数名,

  保持基本量不变,繁难向着简易变。

  逆反原则作指导,升幂降次和差积。

  条件等式的证明,方程思想指路明。

  万能公式不一般,化为有理式居先。

  公式顺用和逆用,变形运用加巧用;

  1加余弦想余弦,1减余弦想正弦,

  幂升一次角减半,升幂降次它为范;

  三角函数反函数,实质就是求角度,

  先求三角函数值,再判角取值范围;

  利用直角三角形,形象直观好换名,

  简单三角的方程,化为最简求解集;

  不等式

  解不等式的途径,利用函数的性质。

  对指无理不等式,化为有理不等式。

  高次向着低次代,步步转化要等价。

  数形之间互转化,帮助解答作用大。

  证不等式的方法,实数性质威力大。

  求差与0比大小,作商和1争高下。

  直接困难分析好,思路清晰综合法。

  非负常用基本式,正面难则反证法。

  还有重要不等式,以及数学归纳法。

  图形函数来帮助,画图建模构造法。

  数列

  等差等比两数列,通项公式N项和。

  两个有限求极限,四则运算顺序换。

  数列问题多变幻,方程化归整体算,

  数列求和比较难,错位相消巧转换。

  取长补短高斯法,裂项求和公式算。

  归纳思想非常好,编个程序好思考:

  一算二看三联想,猜测证明不可少。

  还有数学归纳法,证明步骤程序化:

  首先验证再假定,从K向着K加1,

  推论过程须详尽,归纳原理来肯定。

  复数

  虚数单位i一出,数集扩大到复数。

  一个复数一对数,横纵坐标实虚部。

  对应复平面上点,原点与它连成箭。

  箭杆与X轴正向,所成便是辐角度。

  箭杆的长即是模,常将数形来结合。

  代数几何三角式,相互转化试一试。

  代数运算的实质,有i多项式运算。

  i的正整数次慕,四个数值周期现。

  一些重要的结论,熟记巧用得结果。

  虚实互化本领大,复数相等来转化。

  利用方程思想解,注意整体代换术。

  几何运算图上看,加法平行四边形,

  减法三角法则判;乘法除法的运算,

  逆向顺向做旋转,伸缩全年模长短。

  三角形式的运算,须将辐角和模辨。

  利用棣莫弗公式,乘方开方极方便。

  辐角运算很奇特,和差是由积商得。

  四条性质离不得,相等和模与共轭,

  两个不会为实数,比较大小要不得。

  复数实数很密切,须注意本质区别。

  排列、组合、二项式定理

  加法乘法两原理,贯穿始终的法则。

  与序无关是组合,要求有序是排列。

  两个公式两性质,两种思想和方法。

  归纳出排列组合,应用问题须转化。

  排列组合在一起,先选后排是常理。

  特殊元素和位置,首先注意多考虑。

  不重不漏多思考,捆绑插空是技巧。

  排列组合恒等式,定义证明建模试。

  关于二项式定理,中国杨辉三角形。

  两条性质两公式,函数赋值变换式。

  概率与统计

  概率统计同根生,随机发生等可能;

  互斥事件一枝秀,相互独立同时争。

  样本总体抽样审,独立重复二项分;

  随机变量分布列,期望方差论伪真。

  立体几何

  点线面三位一体,柱锥台球为代表。

  距离都从点出发,角度皆为线线成。

  垂直平行是重点,证明须弄清概念。

  线线线面和面面、三对之间循环现。

  方程思想整体求,化归意识动割补。

  计算之前须证明,画好移出的图形。

  立体几何辅助线,常用垂线和平面。

  射影概念很重要,对于解题最关键。

  异面直线二面角,体积射影公式活。

  公理性质三垂线,解决问题一大片。

  平面解析几何

  有向线段直线圆,椭圆双曲抛物线,

  参数方程极坐标,数形结合称典范。

  笛卡尔的观点对,点和有序实数对,

  两者一一来对应,开创几何新途径。

  两种思想相辉映,化归思想打前阵;

  都说待定系数法,实为方程组思想。

  三种类型集大成,画出曲线求方程,

  给了方程作曲线,曲线位置关系判。

  四件工具是法宝,坐标思想参数好;

  平面几何不能丢,旋转变换复数求。

  解析几何是几何,得意忘形学不活。

  图形直观数入微,数学本是数形学。

  高中数学常考题型答题技巧与方法

  1、解决绝对值问题

  主要包括化简、求值、方程、不等式、函数等题,基本思路是:

把含绝对值的问题转化为不含绝对值的问题。

  具体转化方法有:

  ①分类讨论法:

根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

  ②零点分段讨论法:

适用于含一个字母的多个绝对值的情况。

  ③两边平方法:

适用于两边非负的方程或不等式。

  ④几何意义法:

适用于有明显几何意义的情况。

  2、因式分解

  根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:

  提取公因式

  选择用公式

  十字相乘法

  分组分解法

  拆项添项法

  3、配方法

  利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:

  4、换元法

  解某些复杂的特型方程要用到换元法。

换元法解方程的一般步骤是:

  设元换元解元还元

  5、待定系数法

  待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:

①设②列③解④写

  6、复杂代数等式

  复杂代数等式型条件的使用技巧:

左边化零,右边变形。

  ①因式分解型:

  (-----)(----)=0两种情况为或型

  ②配成平方型:

  (----)2+(----)2=0两种情况为且型

  7、数学中两个最伟大的解题思路

  

(1)求值的思路列欲求值字母的方程或方程组

  

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

  8、化简二次根式

  基本思路是:

把m化成完全平方式。

即:

  9、观察法

  10、代数式求值

  方法有:

  

(1)直接代入法

  

(2)化简代入法

  (3)适当变形法(和积代入法)

  注意:

当求值的代数式是字母的对称式时,通常可以化为字母和与积的形式,从而用和积代入法求值。

  11、解含参方程

  方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用分类讨论法,其原则是:

  

(1)按照类型求解

  

(2)根据需要讨论

  (3)分类写出结论

  12、恒相等成立的有用条件

  

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

  

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

  13、恒不等成立的条件

  由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

  14、平移规律

  图像的平移规律是研究复杂函数的重要方法。

平移规律是:

  15、图像法

  讨论函数性质的重要方法是图像法看图像、得性质。

  定义域图像在X轴上对应的部分

  值域图像在Y轴上对应的部分

  单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

  最值图像最高点处有最大值,图像最低点处有最小值

  奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

  16、函数、方程、不等式间的重要关系

  方程的根

  ▼

  函数图像与x轴交点横坐标

  ▼

  不等式解集端点

  17、一元二次不等式的解法

  一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据三个二次间的关系,利用二次函数的图像去解。

具体步骤如下:

  二次化为正

  ▼

  判别且求根

  ▼

  画出示意图

  ▼

  解集横轴中

  18、一元二次方程根的讨论

  一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据三个二次间的关系,利用二次函数的图像来解决。

图像法解决一元二次方程根的问题的一般思路是:

  题意

  ▼

  二次函数图像

  ▼

  不等式组

  不等式组包括:

a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

  19、基本函数在区间上的值域

  我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。

基本函数求值域或最值有两种情况:

  

(1)定义域没有特别限制时---记忆法或结论法;

  

(2)定义域有特别限制时---图像截断法,一般思路是:

  画出图像

  ▼

  截出一断

  ▼

  得出结论

  20、最值型应用题的解法

  应用题中,涉及一个变量取什么值时另一个变量取得最大值或最小值的问题是最值型应用题。

解决最值型应用题的基本思路是函数思想法,其解题步骤是:

  设变量

  ▼

  列函数

  ▼

  求最值

  ▼

  写结论

  21、穿线法

  穿线法是解高次不等式和分式不等式的最好方法。

其一般思路是:

  首项化正

  ▼

  求根标根

  ▼

  右上起穿

  ▼

  奇穿偶回

  注意:

①高次不等式首先要用移项和因式分解的方法化为左边乘积、右边是零的形式。

②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为商零式,用穿线法解。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 艺术创意

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1