Linear Rheology of Guar Gum Solutions.docx

上传人:b****8 文档编号:9712044 上传时间:2023-02-06 格式:DOCX 页数:33 大小:95.26KB
下载 相关 举报
Linear Rheology of Guar Gum Solutions.docx_第1页
第1页 / 共33页
Linear Rheology of Guar Gum Solutions.docx_第2页
第2页 / 共33页
Linear Rheology of Guar Gum Solutions.docx_第3页
第3页 / 共33页
Linear Rheology of Guar Gum Solutions.docx_第4页
第4页 / 共33页
Linear Rheology of Guar Gum Solutions.docx_第5页
第5页 / 共33页
点击查看更多>>
下载资源
资源描述

Linear Rheology of Guar Gum Solutions.docx

《Linear Rheology of Guar Gum Solutions.docx》由会员分享,可在线阅读,更多相关《Linear Rheology of Guar Gum Solutions.docx(33页珍藏版)》请在冰豆网上搜索。

Linear Rheology of Guar Gum Solutions.docx

LinearRheologyofGuarGumSolutions

LinearRheologyofGuarGumSolutions

RolandH.W.Wientjes,*MichelH.G.Duits,RobJ.J.Jongschaap,andJorritMellema

RheologyGroup,DepartmentofAppliedPhysics,UniversityofTwente,(memberTwenteInstituteofMechanicsandJ.M.BurgersCentre),P.O.Box217,7500AEEnschede,TheNetherlands

ReceivedJune20,2000;RevisedManuscriptReceivedOctober17,2000

ABSTRACT:

Wehaveinvestigatedthelinearviscoelasticbehaviorofguargumsolutionsasafunctionoffrequency,temperature,polymerconcentration,andmolecularweight.Thiswasdonetosortouttheimportanceofdifferentrelaxationmechanismslikereptationorthebreakupofphysicalbonds.Inthekilohertzregime,Rousebehaviorisobserved.Atlowerfrequencies,twostoragemodulusplateauzoneswerefound,indicatingtwoadditionalrelaxations.Oneisoperativebetween1and100Hzandgivesrisetoaverybroadrelaxationspectrum,evenformonodisperseguar.Describingthedependenciesoftherelaxationtimeandlow-shearviscosityonconcentrationandmolecularweightwithpowerlawsresultedinunusuallyhighcoefficients.Thesecondrelaxationbecomesmanifestbelow0.01Hzandhasnotbeenearlierreported.Herethetemperaturedependenceisverystrongwhereasallotherdependenciesareweak.Analyzingtheexperimentswithexistingmodelsfortransientpolymernetworksrevealedthatatbestapartialdecriptionoftheexperimentaldependenciescanbeobtained.Itwasconcludedthatatleasttwodifferentrelaxationmechanismsmustplayarole,classicalreptationnotbeingoneofthese.Bestoverallpredictionswereobtainedwithamodelassumingtwotypesofassociations.However,alsothepictureofstarpolymer-likestructuresheldtogetherviabondswithalonglifetimecouldgivecomparablepredictions.Forafurtherdistinctionbetweenthesemechanisms,moreinformationaboutthemesoscopicstructureisneeded.

10.1021/ma001065pCCC:

$19.00©2000AmericanChemicalSociety

PublishedonWeb12/01/2000

1.Introduction

Galactomannansarewater-solublepolysaccharidesfoundintheseedendospermofavarietyoflegumes.Theyconsistofa(1^4)-linked/3-D-mannopyranosylbackbonepartiallysubstitutedatO-6witha-D-galac-topyranosylsidegroups.6Onegalactomannanwhichiswidelyusedasanindustrialhydrocolloidisguargumwhichhasamannose:

galactoseratioof1.55.Inconnectiontoitsuseasathickenerinfoodproducts,severalresearchgroupshaveinvestigatedtherheologyofguargumsolutions.8,9,23,26,27

InarheologicalstudyperformedbyRoss-Murphy,28wherestartshearbehaviorandthevalidityoftheCox-Merzrulewereinvestigated,itwasconcludedthatguargumsolutionsbehavelikeanentangledsolution,asdescribedbyDoiandEdwards.7ThisconclusionwasdrawndespiteearlierobservationsofRichardsonandRoss-Murphy26whonotedtheonsetofatransitionatlowshearrates(0.01s-1),althoughtheNewtonianlow-shearplateauhadalreadybeenreached.Robinsonetal.27mentionedastrongnonlineardependenceofthespecificviscosityuponconcentration.Fromthisitwasconcludedthatnotonlypurelytopologicalentanglements,butalsospecificattractivepolymer—polymerinteractionsmustplayarole.IndicationsforthiswerealsoobtainedbyGoycooleaetal.15andbyGidleyetal.,13whoattributedacrucialroletothea-D-galactosesidegroupsintheprocessofnetworkcross-linkingbysemihelix—helixaggregation.

Fromthisshortoverview,itisclearthattherheologicalbehaviorofguargumsolutionsisstillincompletelyunderstoodandthatspecificpolymer—polymerinteractionsmightplayaroleintheobservedrheologicalbehavioraswellasreptationphenomena.Tosortouttheimportanceofdifferentrelaxationmechanisms,wehavesystematicallyinvestigatedthelinearviscoelasticbehaviorasafunctionoffrequency,concentra

tion,temperature,andmolecularweight.TosupportinterpretationwehavecharacterizedthemolecularpropertiesbyusingGPC,intrinsicviscositymeasurements,andseveralmicroscopytechniques.Inthispaper,wewillcomparethelinearviscoelasticbehaviorwithpredictionsfromexistingmicrorheologicalmodelsthattakeintoaccounttopologicalconstraintsand/orphysicalbonds.

Thepaperisfurtherorganizedasfollows.Insection2,thepreparationofthesolutions,themicroscopiccharacterizationsandtherheologicalmeasurementtechniquesarediscussed.Insection3,theexperimentalresultsareshown.Theseresultswillbecomparedtorheologicalmodelsinsection4,followedbyadiscussioninsection5,afterwhichconclusionswillbedrawninsection6.

2.ExperimentalSection

2.1.Materials.Guargum(Meyhall)waspurifiedfromacommercialflourusingamodificationofthemethodofMcClearyetal.4Crudeguargum(10g)wastreatedwith200mLofboiling,aqueous80%ethanolfor10min.Theobtainedslurrywascollectedonaglassfilter(no.3)andwashedsuccessivelywithethanol,acetone,andether.Thismaterialwasaddedto1Lofdemiwaterandallowed1htohydrate.Itwasthenstirredwithafoodblender(125W),homogenized(1min),andcentrifugedat2300gfor15min.Thesupernatantwasprecipitatedintwovolumesofcoldacetone.Afterredissolvinginhotwater,thepolymersolutionwasultracentrifugedat82000gfor1.5hatroomtemperature.Thesupernatantwasprecipitatedwithtwovolumesofethanol.Theprecipitatewascollectedonaglassfilter(no.4)andwashedwithethanol,acetone,andetherbeforefreeze-drying.Thisleadtoalmostmonodispersepurifiedguargum.Onlyonebatchofguarwaspurifiedinthislaboriousway,togetamonodispersesystem.Solutionsofthismaterialwerepreparedbyaddingknownweightsofthedryguartotwicedistilledwater,andallowingittohydrateforextendedperiods(severaldays)toensurethatthesamplehadcompletelydissolved.Thiswasdoneata

Table1.MolecularWeightsforSamplesPreparedviaProceduresIandII

guar

Mw(kD)

Mw/Mn

HM

1048

1.02

150

1400

1.1

90

1000

1.5

30

350

1.7

 

temperatureof277Kforconcentrationsbetween0.4and2.0%(w/w).WewillrefertothispurificationanddissolvingmethodasprocedureI.

ForthepurposeofcharacterizationwithMarkHouwinkplots,threeguargumswithdifferentmolecularweights(Meyhall)werepurifiedwithalesslaboriousbutotherwisesimilarprocedure.Herecrudeguargum(10.0g)wassuspendedin1Lofdemiwaterandstirredwithafoodblender(125W)for1min.Theobtainedsolutionwasplacedinarefrigeratorfor24handthencentrifugedat22000^for5h.Then,800mLoftheobtainedsupernatantwasprecipitatedintwovolumesofcoldacetone.Theprecipitatewascollectedonaglassfilter(no.4)andwashedwithethanol,acetone,andether.Thesoobtainedpurifiedguargumwasfreeze-driedanddissolvedasdescribedinprocedureI.ThisprocedureiscalledprocedureII.

Usingtheseproceduresledtoverylongdissolvingtimes.Toshortenthis,athirdpurificationanddissolvingprocedurewasused.Inthisprocedurefourdifferentguargums(Meyhall)withdifferentmolecularweightswerepurifiedbyadding10.0gto400gacetatebufferofpH4.66(Merck).Theslurrywashomogenizedfor75swithafoodblender(500W)andcentrifugedat22000^for5hatroomtemperature.Thesupernatant(typicalconcentration2%w/w)wasusedasastocksolutionfromwhichlowerconcentrationswereobtainedviadilution.ThisisprocedureIII.SeveralcontrolexperimentsrevealedthattherheologicalbehaviorwasnotsignificantlychangedonswitchingfromprocedureIItoIII.

2.2.MolecularCharacterization.ThemolecularweightsofthepurifiedguargumsusingprocedureIandIIweredeterminedbyGPC-MALLS-RI(multianglelaserlightscattering).Theguarwasdissolvedina50mMphosphatebufferwithpH8.0toaconcentrationof0.1%(w/w)andfilteredthrougha0.45^mfilterpriortoinjection.AttheexitoftheGPCcolumnthe(instantaneous)valuesofMandRgweredetectedonline.TheresultsaresummarizedinTable1.

Themannose/galactoseratioofguarHM/150/90/30wasdeterminedbyHPLCafterhydrolysisofthepolymertobe1.59±0.05.

Molecularweightsoftheguargums,obtainedviaprocedureII,wereobtainedfromintrinsicviscositymeasurements.TheseexperimentsweredonewithanUbbelohdecapillaryviscometer(Scott,type53201/0A).

Fromthereducedviscositymeasurements,intrinsicviscositieswereobtainedusingtheHugginsequation:

n-1

nred=1^Y~=[n]+Ac[n]2c

(1)

Herecistheconcentrationguargum,nredisthereducedviscosity,ysisthesolventviscosityand[y]istheintrinsicviscosity.hcistheso-calledHugginscoefficientwhichisapolymerconstantwhichusuallyliesintherange0.5-0.8.TheHugginscoefficientwasdeterminedforallthecurvesandturnedouttobeconstantwithintheexperimentalerrorrange:

0.55±0.05,whichiswithintheexpectedrange.WiththeobtainedintrinsicviscositieswemadeaMark-Houwinkplot(Figure2)andfoundtheMark-HouwinkconstantsAMHandatobe(6.7±1.1)x10-7L/gand1.05±0.01.ThisrelationwasusedlaterasacalibrationcurvetodeterminethemolecularweightsfromintrinsicviscositymeasurementsforthesamplesmadebypurificationprocedureIII.

Thecriticalconcentrationwhereoverlapbetweenpolymerchainsstartstooccur(c*)andtheintrinsicviscositiesforthe,viapreparationprocedureIIIobtainedsamples,wereobtained

Figure1.Reducedviscositymeasurements:

(a)guar30;(♦)guar30duplo;(•)guar90;(+)guar150.

Figure3.Determinationofc*ofguar150:

(•)Ubbelohdemeasurements;(O)ContravesLowShear40measurements.

Table2.[n],Mwandc*fortheSamplesPreparedviaProcedureIII

guar

[n](L/g)

Mw(kD)

c*(g/L)

150

1.2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 中医中药

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1