科学仪器学流式细胞仪.docx

上传人:b****8 文档编号:9704180 上传时间:2023-02-05 格式:DOCX 页数:27 大小:659.23KB
下载 相关 举报
科学仪器学流式细胞仪.docx_第1页
第1页 / 共27页
科学仪器学流式细胞仪.docx_第2页
第2页 / 共27页
科学仪器学流式细胞仪.docx_第3页
第3页 / 共27页
科学仪器学流式细胞仪.docx_第4页
第4页 / 共27页
科学仪器学流式细胞仪.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

科学仪器学流式细胞仪.docx

《科学仪器学流式细胞仪.docx》由会员分享,可在线阅读,更多相关《科学仪器学流式细胞仪.docx(27页珍藏版)》请在冰豆网上搜索。

科学仪器学流式细胞仪.docx

科学仪器学流式细胞仪

流式细胞仪

生命科学是一门以实验为基础的学科,要做实验必然少不了仪器设备。

仪器设备的好坏也是衡量一个实验室水平的重要标志之一。

同学们巳经进入大学二年级下的学习,矣越来越多地接触到一些科研仪器,今天我们要讲的是其中之一一一流式细胞仪。

图1流式细胞仪及流式细胞图

1.1流式细胞仪基本结构与功能

1.1.1流式细胞仪基本结构

流式细胞仪(flowcytometer,FCM)是集现代物理电子技术、激光技术、计算机技术于一体的先进科学技术设备,是生命科学研究领域中先进的仪器之一。

概括来说,流式细胞术就是利用流式细胞仪对处干快速直线流动状态中的单列细胞或生物颗粒进行逐个、多参数、快速的定性、定量分析或分选的技术。

它具有如下几个特点:

①实现对单列细胞或生物颗粒进行逐个检测。

只要标本是单个细胞或生物颗粒,即可用干分析,如血液、骨髄、体液中的细胞、培养细胞等,实体组织经处理后制成的单细胞悬液也能分析。

②实现商通量检测。

只要标本中的细胞或生物颗粒数量足勞,短时间内可分析大量细胞或生物颗粒。

流式细胞仪可以每秒钟数十、数百、数千个细胞的速率进行检测,被检测的细胞总数可达数千、数万乃至数百万个。

③多参数、多色荧光分析对细胞特性的识别、计数更为准确。

用不同荧光素标记的单克隆抗体进行多色荧光染色,可同时分析单个细胞或生物颗粒的多种特征,使细胞特性的识别、计数更为准确。

④定性或定量分析细胞。

通过荧光染色对单个细胞或生物颗粒的某些成分,如DNA含量、抗原或受体表达量、Ca?

+浓度、酶活性、细胞的功能等均可进行单细胞水平的定性与定量分析。

⑤分选特定性状或功能的细胞。

有些流式细胞仪还具有细胞分选功能,可将具有特定性状或功能的细胞从混合细胞群中分离出来。

总之,它具有检测速度快、测量指标多、采集数据量大、分析全面、分选纯度高、方法灵活等特点。

流式细胞仪的基本结构包括四大模块:

流动室与液流系统、光源与光学系统、信号收集

与信号转换系统、计算机与分析系统。

具有分选功能的流式细胞仪还包括分选系统。

1.1.1.1流动室与裁流系统

由于流式细胞仪的激发光路是固定的,一般与细胞悬液的轴心正交,这就要求细胞必须在流经激光聚焦区时不能偏离其轴心,且不能聚集成团,阻塞管路,否则光束无法准确照射细胞中心,造成信号不稳定,影响测量结果的精密度。

流式细胞仪液流系统成功地解决了上述问题。

根据层流原理(戻流,1aminarflow,是流体的一种流动状态。

流体在管内流动时,其质点沿着与管轴平行的方向作平涓•直线运动。

此种流动称为戻流或滞流,亦有称为直线流动的。

流体的流速在管中心处最大,其近壁处最小。

管内流体的平均流速与最大流速之比等于0.5),利用专门设计的流动室(flowcell),便样本流与鞘液流形成同轴流动状态。

由干样本喷嘴处干流动室中央,这就便得样本流在鞘液流包義下恒定处于同轴流动的中心位直,其精度可稳定在几微米之内。

流动室还根据BernouHi定律,利用大小两个不同截面,便鞘液从截面积较大部分流经截面积较小的样本流部分,使液流聚焦在入口处,形成检测点。

液流系统的心脏是流动室,由样品管、鞘液管和喷嘴等组成,常用石英玻璃竽透明、稳定的材料制作,设计和制作均很精细。

样品管储放样品,单个细胞悬液在液流压力作用下从样品管射出;鞘液由鞘液管从四周流向喷孔,包围在样品外周后从喷嘴射出。

为了保证液流是稳液,一般限制液流速度<10m/s(图2)。

图2流动室液流原理与检测点

1.1.1.2光源与光学系统

流式细胞仪的检测是基干对光信号的检测来实现的,包括对散射光和荧光的检测,因此光源与光学系统是流式细胞仪中最为重要的一个系统。

它由激发光源、一系列光通过和光反射的错片组成(图3)0

图3光源与光学系统

(1)激发光源。

目前流式细胞仪所用的激发光源包括弧光灯和激光器。

弧光灯多为髙压汞灯,激光器按产生激光的物质的种类可分为固体激光器、气体激光器、液体激光器和半导体激光器。

各种激发光源应该说各有优缺点,没有哪种激发光源可以适于所有的场合,生产厂家在选择何种光源作为激发光的时候主要考虑:

分析或分选目的、激发波长的需要、仪器设计等。

作为流式细胞仪的激发光源,有两个特性是比较重要的:

①单色性和单向性。

单色性是指一种激光往往为某一波长的光;单向性是指激光的方向性相当好,几乎没有侧散射并且能进行远距离传播。

激光作为流式细胞仪的激发光源,具有良好的单向性和单色性。

当然,任何光源其发射波长都不仅仅是一个波长,都需要通过各种配套的光学组件来获得单色光。

例如,氮离于激光器其实提供了488nm和514nm两条谱线,后者在应用时通过滤光片滤除;汞弧光灯可以筛选出很多波长的光,通过各种配套的光学组件,也可以取得不亚于单波长激光的单色性。

②衰减。

任何光源在使用时都矣有功率衰减,因此都有寿命要求,对于气体激光器,汞弧光灯可以保用5000h,半导体激光器可以保用8000ho现有的流式细胞仪的激发光大概为两种波长,第一激光为488nm,第二激光为633nm。

有些流式细胞仪还有第三、第四激光,分别为407nm>355nm0

(2)光学系统。

流式细胞仪的光学系统是由若干组透错、滤光片和分光饋等光学元件组成,它们分别将不同波长的光信号送入到不同的探测器。

其主要光学元件是滤光片(filter),它主要分为四类:

长通滤光片(long-passinter,LP)、短通滤光片(short-passfilter,SL)、带通滤光片(band-passfilter,EP)和二分镜。

长通滤光片:

使特定波长以上的光通过,特定波长以下的光不能通过,如LP500滤片,允许500nm以上的光通过,而500nm以下的光则吸收或返回。

短通滤光片:

与长通滤光片正好相反,使特定波长以下的光通过,特定波长以上的光则吸收或返回。

带通滤光片:

可允许相当窄范围内的波长通过。

滤片一般有两个值,一个为允许通过波

长的中心值,另一个为允许通过波长的范围。

例如,BP500/25表示允许通过的波长范围

为475〜525nm,其中心值为500nm(图4)0

500/50LP500SP500

图4各种透错示意图

二分锤:

二分镜分短通二分错和长通二分橙。

长通二分错(dichromaticLP,DLP)只允

许某一特定波长以上的光通过,此波长以下的光则呈90。

反射;短通二分错(dichromatic

SP,DSP)只允许某一特定波长以下的光通过,此波长以上的光呈90。

反射(图5)。

图5二分错示意图

1.1.1.3宿号收集与光电转换系统

流式细胞仪的信号收集与光电转换系统主要由光电转换器件、放大器和信号处理电路组成。

(1)光电转换器件。

光电转换器件的主要功能是将光信号转换成电流信号。

在流式细胞仪中,光电二极管和光电倍增管(PMT)执行此功能。

PMT的转换效率要远远大于光电二极管。

对干光电二极管来说,如果有10个入射光于,产生的电子数量不矣超过10个电子,但一个光子到达PMT的光电阴极时,可产生数十万个电子。

当然,如果前置放大电路有足够的増益和低噪咅的话,光电二极管所产生的信号更准确。

当携带荧光素的细胞与激光正交时,受激发发出荧光,经过滤光片分离不同波长的光信号分别到达不同的PMT或光电二极管,将光信号转换成电信号,然后输入到放大器放大,供信号处理系统处理。

放大器分两类:

线性放大和对数放大。

检测细胞DNA含童、RNA含童、总菠白质含童笹时,一瑕选用线性放大测童;而在检测细胞膜表面抗原笹时,细胞膜表面抗凍的分布有时相差几十倍,甚至几万倍,如用线性放大器,无法在一张图上清晰地将细胞阳性群、阴性群同时显示出来,通用对数放大黠。

如果原来输出是1,当输入增大到原来的10倍时,输出为2;当输入増大到原来的100倍时,输出为3竽。

信号处理电路的主要功能是将电信号转变成脉冲信号、数字信号最终传送给计算机系统进行处理。

它主要由前直放大电路、脉冲峰值检测器和模/数转换电路组成。

理论上,模/数转换芯片的位数和速度决定了数字信号的精度,模/数转换芯片的位数和速度越髙,仪器精度就越高,但同时要考虑噪声信号的水平。

(2)计算机与分析系统。

流式细胞仪的计算机系统用于控制整个仪器的运行、数据采集和数据分析。

各公司所产的流式细胞仪都有自己特有的分析系统,如BD公司的CeUqust.FACSDiva分析系统和BeckmanCoulter公司的EXP、CXP分析系统。

1.1.2流式细胞仪的基本功能与应用

流式细胞仪是检测细胞各种成分的重要细胞生物学工具,其基本功能是对各种粒于或细胞进行分析与分选。

1.1.2.1定性或定,分析功能

流式细胞术不但可以定性、定量分析细胞膜、细胞质和细胞核中的各种细胞成分,而且可以研究细胞的各种功能状态(如细胞増殖、细胞凋亡、细胞分化、礴活性、细胞膜通透性、個化还原状态、吞噬性等)。

目前通过液相芯片技术还可以定量检测血清中的各种可溶性生物分于成分。

细胞膜:

脂质双层分子结构中具有多种蛋白质分子一一细胞表面抗原,表面糖类,表面受体,膜电位,膜结合钙离于,细胞表面电荷等,这对确定细胞的性质及其功能是十分重要的。

细胞质:

各种细胞成分,包括蛋白质、RNA、各种细胞器中的特殊成分、各种抗原、基因编码蛋白、细胞因于、细胞质内钙离于、pH值、各种基因表达蛋白、抗原蛋白等。

细胞扶:

DNA、RNA、蛋白质竽。

可溶性成分分析:

通过液相芯片技术可以定量检测血清中的各种可溶性生物分于成分。

1.1.2.2分选功能

借助流式细胞仪的分选系统,可将具有特定性状或功能的细胞从混合细胞群中分离出来,再进行分析或培养。

它具有以下优点:

①分选纯度高(可达99%);②分选回收率高(可达90%);③可分选活细胞,并可进行单细胞克隆。

1.2流式细胞术的■要术语

1.2.1前向散射与侧向散射

在流式细胞术中,由于细胞在未受到任何破坏的情况下对光散射是其固有属性,所以可利用细胞对光的散射信号的不同反应对细胞进行分析与分选。

细胞在鞘液流中通过激光照射-测量区,细胞向空间呈360。

立体角方向散射光线,散射信号与细胞大小、形状、质膜以及细胞内颗粒结构的折射率有关。

在流式细胞术中常被利用的有前向散射(forwardscatter,FSC)与侧向散射(sidescatter,SSC)O

前向散射也称小角散射,该值的大小与细胞的直径成近似直线关系,也就是说,对于不同细胞,细胞越大,其FSC越大;反之则越小。

侧向散射又称90。

散射,它对细胞膜、胞质和核膜的折射更为徽感,其散射强度几乎与细胞内穎粒结构的质童成近似直线关系,也就是说,细胞内穎粒结构越复杂,质加越大,其SSC越大;反之则越小(图6、7)。

图6FSC和SSC检测器

 

 

图7光散射信号FSC、SSC与细胞大小、胞内颗粒结构的关系

1.2.2Coultei■效应与电子体积

Coulter效应原理:

微小粒子(包括细胞)并不导电,但通过充满电解液的特殊小孔时可产生电阻变化,细胞的体积越大,电阻的改变就越大。

利用这种原理将电阻变化记录为电位变化,应用于微小粒于的体积测量和计数上。

采用这种方法计算该颗粒的体积就是电子体积。

目前,库尔特贝克曼公司开发了应用电子体积与侧向散射组合代替FSC与SSC组合来对样品进行分群的新技术。

1.2.3荧光倍号及其面积与宽度

光线是一种由光于组成的能量形式,光线的颜色(波长)与光线的光子能量高低相关。

光线的能量随着波长的递增而减弱,波长越短,能量越高;波长越长,能量越低。

蓝光的波长为400〜500nm,而红光的波长为600〜650nm,其他可见光(録、黄和橙)的光谱落在两者之间。

原于由原于核(质于和中子)和沿核周轨道运动的外戻电于组成,一个电子可以在任何的轨迹上运动,这取决干这个电于所携带的能量。

在基础态电于轨道上运动的电于吸收能量(可以是光子携带的能量)后而转移到外戻激发态电子轨道上运动,而在激发态电于轨道上运动的电于返回基础态轨道时,释放能量并散射出荧光,这就是荧光产生的机制。

一种物质的吸收光谱(absorptionspectra)取决干这种物质的原子中的基础态轨道电子跃迁到激发态轨道所需要的能量,而荧光的发射光谱(emissionspectra)则取决于电子由激发态轨道返回到基础态轨道所释放的能量。

由于电于从激发态轨道返回到基础态轨道时,部分能量以热能的形式释放,这就是一种荧光物质的吸收光波长总比所散射的荧光波长小的原因。

经染色后的细胞通过激光照射-测量区,在激光照射下,荧光染料吸收能量发生能量跌迁,在短暂的延迟后回到基态并发出荧光,产生的荧光信号被特定波长的双色性反射错和带通滤光片组成的一组光学元件传递到信号收集器中(光电倍增管,PMT)收集,形成信号脉冲。

每一个信号脉冲都有其髙度、面积与宽度(图8)。

每种颜色的荧光占用一个特定波长的检测器,每种颜色的检测器称为一个荧光通11(fluorescencechannel)(图9)。

图8荧光信号脉冲的面积、髙度与宽度

图9荧光信号和荧光通道

荧光信号脉冲高度表示荧光信号的强度,表示为FLn-Heiglit,力为仪器的荧光信号收集器序数,如第1色荧光脉冲高度表示为FLl-Heiglito

荧光信号脉冲面积是采用积分计算的荧光通量。

一般对DNA倍体分析时采用面积与觉度,如第2色荧光信号脉冲面积(FL2-A)、宽度(FL2-W),其他分析则一敵采用脉冲商度。

这是因为荧光脉冲面积比荧光脉冲高度更能准确地反映DNA含量。

形态差异较大而DNA含量相同的细胞,其被检测的荧光脉冲高度(FL2-Height)是不等的,而荧光脉冲面积(FL2-A)则相等。

荧光信号脉冲宽度(FL2-W)反映荧光的分布,常用来区分双连体细胞。

由于DNA组织样本中的细胞容易聚集、粘连,当两个G1期细胞粘连在一起时,其测量到的FL2-A与一个细胞的G2/M期是相等的,导致测量数据中G2期细胞比例矣增加,影响测量数据的准确性。

但连体细胞的FL2-W则要大些(图10),用流式细胞术分析DNA倍体时,通常应选FL2-W将连体细胞区分开来(图11)。

图10双连体细胞与单细胞形成的荧光信号脉冲比较

(右图为用荧光宽度与面积区分双连体细胞,R1为双连体细胞)

图11双连体细胞在细胞周期与细胞凋亡(亚G1峰)中的应用

(图上为排除双连体细胞周期分析图。

DipGl:

53.91%;DipG2:

24.00%;DipS:

22.08%;G2/G1:

1.74O图下为未排除双连体的分析图。

DipGl:

49.53%;DipG2:

28.73%;DipS:

21.4%;G2/G1:

1.77。

可见双连体对细胞周期的影响)

1.2.4光谱■叠与荧光木陪

流式细胞仪是通过内置的激光器发射激光激发荧光染料,通过荧光将488nm或其他波长的光转变为另一波长的光,并通过光电倍增管或光电二极管将光信号转变为电信号或数字信号,并由计算机统计处理为可读数据。

用激光束激发两种或两种以上荧光物质而发出不同波长的荧光,从理论上来讲,可以选择光学组件将它们分开,仅使一种荧光被一种荧光探测器收集处理,而检测不到另外一种荧光。

实际上由干荧光素的激发或发射波长是正态或偏态曲线,即有很宽的范围,荧光素之间的波谱常有車叠现象,如FITC、PE的发射波长均为偏态分布,FITC受激发后将光源多数转变为525nm左右的光,而PE则多数转变为575nm左右的光,但两者波谱有重査的情况,因而FITC荧光探测器矣检测到由PE发射的575nm左右波长的光信号,同样,PE探测器也可检测到由FITC发射的525nm左右波长的光信号,只不过每一个荧光探测器检测到的荧光信号以一种荧光为主而巳。

此时就需要进行一系列仪器设直,去除这部分干扰。

流式细胞仪在设计时就加入了电子补偿系统,去除因光谱車叠而进入其他荧光探测器的荧光信号,这个过程叫荧光补偿。

补偿的程度一般要根据当时仪器状态与各荧光脉冲强度来决定。

荧光补偿分人工补偿与自动补偿。

例如,检测FITC与PE双标,人工补偿时,先测定FITC染料,此时除接收该荧光的光电倍增管1(FL1)应该有信号外,另一个光电倍增管(FL2)也可检测到微弱的荧光信号,这时需要调节补偿系统,将FL2检测的荧光信号调至阴性区域(即零信号)。

在检测第二种荧光染料PE时,将FL1检测的荧光信号调至零信号。

自动补偿系统则是新一代流式细胞仪(如LSR-ILFC-500等)预先在机器中装栽数字信号处理器(DSP),采用数字化荧光波长分布分析技术与高级数字化校正技术,完成全矩阵荧光自动补偿,不需人工调节,操作更为简单、方便。

由干采用全矩阵自动补偿技术,还可以实现在离线状态下完成补偿功能,即检测时不进行荧光补偿或补偿不好,在检测完毕后,仍可以进行补偿与分析。

如图12所示为FITC与PE双标记荧光补偿的补偿原理与过程。

F】TC无PE茨光检SB.补镂示

图12FITC与PE双标记荧光补偿示意图

1.2.5细胞基础荧光域值与阴性对照重宿区间

按测量不确定度的定义,合理赋亍被测量之值的分散区间包括全部被测量的测量结果,即测量结果100%存在于这一区间。

这一分散区间的半宽一般用表示。

由随机样本计算得到的参数估计值可能在未知直值的附近变化。

对干任意给定的估计值,我们可以找到一个可能包含克值的双边直信区间:

L<

但是如果仅要求某个区间只包含其95%的被测量值,这个区间就称为概率"=95%的直信区间,其半宽就是扩展不确定度U95;如要求99%的概率,则为U99相应的概率称为直信概率。

对干一个流式样本来说,由干细胞的自发荧光和因化学键、生物键与分于之间的吸引作用,蛋白(荧光抗体)矣与待测标本中的细胞发生少量非特异性结合,在流式细胞仪上可检出一定的信号,这部分的信号称为基础荧光域值。

根据直信区间的原理,在流式标本的检测过程中,通常需要通过调节电压将阴性细胞的基础荧光域值直于95%或99%的直信区间内,作为阴性对照可信区间设定,即在阴性对照组的直方图或散点图中,基础荧光域值设定在阴性分布的最左端或下端,包括95%〜99%的数据。

可能有1%〜5%的阴性对照组的数据矣出现在游标的右侧或上端,则被认为是阳性数据,一般是非待异性信号。

随后的检测样本将比照这个阴性对照可信区间,确定其分析结果的阴性或阳性比例。

有时候直方图的单峰可能是正态分布,也可能不是正态分布,分析的区域是围绕峰值而选定的。

与这一区域相关的统计学数据是均数或中位数,后者直接对应于被统计的平均荧光强度(meanfluorescence-intensity,MFI)O在此处理过程中,用阴性对照组与实验组的MFI进行比较(图13)o

图13阴性对照组与实验组的MFI进行比较

1.3流式细胞术基本凍理

1.3.1流式细胞术分析的基本凍理

前面我们谈到两组車要术语:

前向散射、侧向散射与荧光信号。

前向散射与侧向散射是细胞固有的属性,暂称为物理属性。

前向散射(FSC)的大小与细胞的直径成正相关,也就是说,细胞越大,其前向散射越大;反之则越小。

侧向散射(SSC)的强度几乎与细胞内颗粒结构的质量成正相关,也就是说,细胞内颗粒结构越复杂,质量越大,其SSC越大;反则越小。

荧光信号则是人们通过不同的手段将荧光物质结合在细胞上,是人为的属性,暂称为化学属性,通常代表了试验者检测目的。

流式细胞仪就是通过这两种属性将细胞进行分群、分析的。

检测一个不同类质细胞的混合样品时,每个细胞在液流中通过激光照射-测量区,都矣被信号探测器检测到其物理属性。

由干同一类质的细胞具有相同或相近的直径大小和颗粒结构,所以应该具有相同或相近的FSC与SSCo那么,在以FSC作为横坐标,SSC作为纵坐标的散点分布图中(这只是一个习惯的标识法,也可以FSC作为纵坐标,SSC作为横坐标),同一类质的细胞矣根据其FSC与SSC的大小(也即细胞直径和颗粒、结构、质量的大小)以散点的形式集中分布在某一区域中,每一个散点代表一个该同一类质的细胞。

同样,其他同类质的细胞也矣根据其FSC与SSC的大小分布在分布图中,这样就可以将混合细胞进行分群(图14)。

当然检测标本千差万别,其FSC与SSC也矣或大或小,这时需要通过调节PMT增益,使每群细胞都分布在坐标图中的可视范围内。

(为外周血白细胞的分群惜况。

由于淋巴细胞体积较小,细胞内颗粒少,故其分布处干FSC、

SSC都较小区域,即R1区;粒细胞体积较大,细胞内颗粒最多,故其分布处于FSC大、

SSC最大的区域,即R3;单核细胞体积较大,细胞内颗粒较粒细胞少,故其分布处干二者

之间;R4为红细胞裂解碎片和少量血小板等)

利用细胞自身的物理属性可对混合细胞进行分群并可找到欲检测的目的细胞,那么如何确定欲检测的目的细胞是否表达荧光信号呢?

这时需要先将欲检测的目的细胞群圈定(即设门),然后将门内的细胞以FSC或SSC为横坐标、荧光信号为纵坐标的散点分布图表示出来。

在此图中,细胞令出现在与其FSC或SSC大小相应的位直,并只可能表现出两种情

况:

荧光信号弱或无、荧光信号强或有(图15)。

图15通过光散射R1设定,理论上细胞表面FITC表达情况

(左图为R1区内细胞群FITC信号弱或无的模式图(98%左右在Q3内,Q1为非特异性信

号),图中・图右为R1细胞群区内FITC信号有或强的模式图(Q1))

图16通过调整电压可以便荧光信号增强或减弱

(荧光信号可以因调节电压的大小而改变;图左为阳性标本;图中为减小电压,平均荧光信

号强度降低,阳性率降低;图右为增大电压,平均荧光信号强度増强,从而便gating无法

精确画出)

如图16所示,调节PMT增益(电压)可以改变目的细胞的荧光信号强弱,那么如何判断特异性荧光信号的有无?

这就需要设置阴性对照以确定细胞自身的基础荧光域值,并通过它来判断待测样本中是否有特异性荧光信号。

当荧光素或荧光特异性抗体与待测细胞反应后,流式细胞仪矣检测到两部分信号:

一部分是细胞自身的基础荧光域值;另一部分是标记在细胞上的荧光素信号,即特异性信号,这部分的荧光信号强度大于基础荧光域值的荧光信号强度。

为确定特异性荧光信号,首先通过调节电压,将阴性对照细胞的基础荧光域值调至阴性直信区内,然后对阴性直信区进行界定,大于阴性直信区的荧光信号即为特异性荧光信号。

习惯上,为后期分析作图时美观好看,阴性直信区一般设定在散点图中的左下象限,直方图中的荧光强度的10」区内(BDFACScalibur流式细胞仪);当然,只要机器电压允许,不影响阳性信号的显示,也可以设定在IOSIO?

区内。

流式细胞仪阴性置信区的界定是通过“四象限或Ml的划分”来实现的。

在散点图中为四象限的划分区间,在直方图中为Mal

因此,对于一个流式样本来说,设直阴性对照是必须的,且阴性直信区的界定一旦

设定,将作为后续样本的阴、阳性判断的基础,不能随意变动(图17、18)。

图17通过阴性对照的基础荧光阈值界定阴性直信区

(图左为阴性对照,通过调节电压将其基础荧光域值调节至阴性置信区内(Q3)并界定阴性直信区,Q1为少量非特异性信号,一般小于1%〜5%;图右为样本,通过与阴性对照比对,

大于基础荧光域值的荧光信号(Q1)确定为特异性阳性信号)

1.3.2流式细胞术分选的基本原理

流式细胞仪的分选功能是由细胞分选器来完成的。

其总的过程是:

由喷嘴射出的液柱被分割成一连串的小水滴,根据选定的某个参数由逻辑电路

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1