ANSYS学习体会.docx

上传人:b****7 文档编号:9667466 上传时间:2023-02-05 格式:DOCX 页数:12 大小:24.24KB
下载 相关 举报
ANSYS学习体会.docx_第1页
第1页 / 共12页
ANSYS学习体会.docx_第2页
第2页 / 共12页
ANSYS学习体会.docx_第3页
第3页 / 共12页
ANSYS学习体会.docx_第4页
第4页 / 共12页
ANSYS学习体会.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

ANSYS学习体会.docx

《ANSYS学习体会.docx》由会员分享,可在线阅读,更多相关《ANSYS学习体会.docx(12页珍藏版)》请在冰豆网上搜索。

ANSYS学习体会.docx

ANSYS学习体会

1.如何显示SOLID65单元内部配筋方向?

操作步骤:

1)使实体透明化:

UtilityMenu>PlotCtrls>Style>Translucency

注意:

1——完全透明;0——完全不透明

2)显示与实常数相关的单元形状:

UtilityMenu>PlotCtrls>Style>SizeandShape

将ESHAPE开关打开。

3)消影

UtilityMenu>PlotCtrls>Style>EdgeOptions

对GLINE进行选择。

4)将单元缩减以更好地观察

UtilityMenu>PlotCtrls>Style>SizeandShape

对SHRINK开关进行选择缩减比例0%~50%。

2.Solid65的本构关系

弹塑性行为

1)受拉弹性

2)受压可以选择一些塑性模型:

a)VonMises屈服面

b)Drucker-Prager屈服面

c)理想弹塑性

可以使用以下本构关系:

1)等强硬化模型(MultilinearIsotropicHardening)

2)随动硬化模型(MultilinearKinematicHardening)

3)Drucker-Prager模型(DP模型),DP模型在混凝土中为理想弹塑性模型

3.Solid65单元中的破坏准则

采用Willam&Warnke五参数破坏准则

需要参数:

1)单轴抗拉强度,

2)单轴,双轴抗压强度,

3)围压压力,

4)在围压作用下的双轴,单轴抗压强度

4.混凝土与钢筋组合模型的选取

1.在条件允许的情况下,优先使用整体式模型;

2.滑移影响可以通过折减钢筋弹模加以模拟;

3.在类似节点受往复荷载作用的问题,由于滑移严重,必须使用界面单元;

4.预应力考虑预应力损失,必须使用界面单元。

5.ANSYS裂缝模型的说明

1.ANSYS的裂缝模型相对比较粗糙,使用时应加以慎重考虑;

2.受拉软化给的是基于固定极限应变的软化模型,比较适用于配筋合适的钢筋混凝土构件,对素混凝土构件有很强的网格依赖性,效果一般不好;

3.ANSYS的裂面受剪模型为恒定的裂面剪力传递系数模型,在模拟受剪破坏时,剪力传递系数选择不当往往会高估构件受剪承载力。

6.ANSYS建模中需要注意的问题

!

!

单元尺寸大小

基于最大开裂应力准则,单元越细,应力集中越严重,开裂出现越早

解决方法

1)使用半脆性裂缝模型,减小单元尺寸影响

2)控制网格大小,单元尺寸不宜小于5cm

3)控制网格划分,在容易出现应力集中的部位要避免过小的单元出现

!

!

施加支座

支座是个非常严重的应力集中部位,尽量避免把约束直接施加在支座上

解决方法

1)加弹性垫块,利用圣维南原理减小应力集中

2)加大支座部位单元尺寸,减小应力集中

7.具体的系数及公式

1)定义tb,concr时候的两个系数如何确定?

一般的参考书中,其值建议先取为0.3~0.5(江见鲸),原话是“在没有更仔细的数据时,不妨先取0.3~0.5进行计算”,足见此0.3~0.5值的可用程度。

根据我的经验和理由,建议此值取大些,即开裂的剪力传递系数取0.5,(定要>0.2)闭合的剪力传递系数取1.0。

支持此说法的还有现行铁路桥规的抗剪计算理论,以及原公路桥规的容许应力法的抗计剪计算。

2)定义混凝土的应力应变曲线

单向应力应变曲线很多,常用的可参考国标混凝土结构规范,其中给出的应力应变曲线是二次曲线+直线的下降段,其参数的设置按规范确定即可。

当然如有实测的应力应变曲线更好了。

3)其他选项:

如线性搜索、预测等项也可以打开,以加速收敛,但不能根本解决问题。

4)计算结果:

仅设置concr,不管是否设置压碎,其一般P-F曲线接近二折线;采用concr+miso则P-F曲线与二折线有差别,其曲线形状明显是曲线的。

8.如何用AUTOCAD如何出ANSYS的图?

有什么好办法吗?

这两种方法:

1)用apdl生成数据文件,然后用excell打开并处理,然后到autocad中绘制;如post26中的变量曲线即用此法。

2)直接用apdl生成DXF格式的文件,如变形图等。

9.用ansys计算钢筋混凝土,当第一条裂缝出现(此时荷载很小)时,往往很难收敛,你可以改变一下混凝土的参数,或调整一下收敛准则,或改变网格划分,可能有用。

10.我想问什么时候是开裂荷载呢,当有第一道裂纹是吗?

那么在ansys中怎么检测了,用etable吗?

还是别的什么命令呢?

开裂荷载就是第一到裂纹出现的时候,所加荷载即为开裂荷载;至于如何检测,我也没有好的办法,就是在开裂荷载附近,将荷载不加的很小!

观察第一条裂纹的出现。

有文献在开裂后取到每个子步5N。

真是有耐心。

11.请教,在混凝土的压碎图中,绿色小圆圈跟红色小圆圈的表示有什么区别

红色是第一次开裂的,绿色是第二次开裂的。

 

12.关于ANSYS分析效果

1)受弯——强度一般都比较准,刚度要差一些

2)受剪——精度依赖于裂面剪力传递系数,要调整。

3)受轴压——高轴压比,高围压,很难算准

4)往复荷载——效果一般都不是很理想,除非很精细地调整参数

 

13.LNSRCH,Key—ActivatesalinesearchtobeusedwithNewton-Raphson

Youcannotuselinesearch[LNSRCH],automatictimestepping[AUTOTS],ortheDOFsolutionpredictor[PRED]withthearc-lengthmethod[ARCLEN,ARCTRM].Ifyouactivatethearc-lengthmethodafteryousetLNSRCH,AUTOTS,orPRED,awarningmessageappears.Ifyouchoosetoproceedwiththearc-lengthmethodactivation,ANSYSdisablesyourlinesearch,automatictimestepping,andDOFpredictorsettings.

14.钢筋混凝土整体模型计算小结

1)单元太小易开裂,难收敛,且计算结果不稳定;

2)子步数太少,计算结果不精确但曲线较光滑。

15.ANSYS文件指南

最大程度地减小由于误操作引起的文件覆盖等,我们建议您培养以下习惯:

1)针对每个分析项目,设置单独的子目录;

2)每求解一个新问题使用不同的工作文件名,在AYSYS启动对话框中设置工作文件名;

3)ANSYS的Output文件在交互操作中并不自动被写出,在交互操作中,您必须用UtilityMenu:

File>SwitchOutputto>File把output写到一个文件中;

4)分析完成后,您必须保存如下文件:

log文件(.log),数据库文件(.db),结果文件(.rst,.rth等),载荷步文件(.s01,.s02,...),输出文件(.out),物理环境文件(.ph1,.ph2,...)。

注意:

log文件只添加,不会覆盖.

16.制订分析方案是很重要的。

一般考虑下列问题:

a)分析领域

b)分析目标

c)线性/非线性问题

d)静力/动力问题

e)分析细节的考虑

f)几何模型对称性

g)奇异:

是有限元模型中由于几何构造或载荷引起弹性理论计算应力值无限大。

h)单元类型

i)网格密度

j)单位制

k)材料特性

l)载荷

m)求解器

17.在应力奇异处:

1)单元网格越是细化,越引起计算应力无限增加,并且不再收敛。

2)网格疏密不均匀时网格离散误差也大小不一(自适应网格划分结果是失败的或者网格错误)。

 

18.“热点”

1)对于面或体,热点为图形中心;

2)对于线,有三个热点。

为什么这一点非常重要?

需要在图形窗口拾取取图元时,应该点取图形的热点,确保拾取所需要的图元。

这对于有多个图形重叠的情况非常重要.

19.应力上下限

应力上下限可以帮助确定由于网格离散误差对模型的应力最大值的影响,显示或列出的应力上下限包括:

估计的上限-SMXB

估计的下限-SMNB

应力上下限限并不是估计实际的最高或最小应力.对于有些情况,SMXB过于保守.而有些情况比实际的要小.

应力上下限定义了一个”确信范围.”如果没有其他的确凿的验证,就不能认为实际的最大应力低于SMXB.

20.接触单元

注意:

点对点接触只能用于低次单元.

接触12单元和接触52单元既能用直接生成法创建,也能在重合节点处创建单元.

前处理器->创建->单元->在重合节点

(Preprocessor->Create->Elements->AtCoincidNd)

接触12单元应该在重合节点间创建.然而接触52单元要求1E-6的距离来定向单元.

21.接触刚度

点对点(接触12单元和接触52单元)和节点对表面(接触48单元和接触49单元)接触单元都要求给出罚刚度.

罚刚度越大,接触表面的侵入量越小.然而,若此值太大,则会由于病态条件而引起收敛困难.

可以通过一些实验来确定一个合适的接触刚度,使求解收敛,而且侵入量可以接受.

22.选择接触刚度

接触刚度是接触面的相对刚度的函数.

对于块状实体,通常赫兹接触刚度(Hertzcontactstiffness)适用于罚刚度,可以这样估算:

k=fE

式中f是介于0.1~10之间的系数,E是较软的接触材料的弹性模量.设f=1通常是一个较好的起始值.

应该设置罚刚度比例系数(FKN)和拉格朗日乘子侵入比例系数(FTOLN).FKN通常介于0.01~10之间.对于体积变形问题,用值1.0(默认),对于以弯曲变形为主的问题,用值0.1.

FTOLN默认为0.1.可以改变此值,但若容差太小,会使迭代数过多或不收敛.

23.面对面接触处理

对于面对面接触单元,一个面指定为“目标”面,另一个面为“接触”面.

对于刚体对柔体接触,刚体表面总是指定为目标面.

对于柔体对柔体接触,接触面与目标面都与变形体相关联.

接触单元被约束,不能侵入目标面.然而,目标单元能够侵入接触面.

24.目标/接触面的指导方针

如果凸面与平面或凹面接触,那么平面或凹面应该是目标面.

如果一个表面网格粗糙,而另一个表面网格较细,那么网格粗糙的表面应该是目标面.

如果一个表面比另一个表面的刚度大,那么刚度大的表面应该是目标面.

如果一个表面划分为高次单元,而另一个表面划分为低次单元,那么划分为低次单元的表面应该是目标面.

如果一个表面比另一个表面大,那么更大的表面应该是目标面.

25.接触算法

选择一个接触算法关键字选项

(2)

增强的拉格朗日法(关键字选项

(2)=0)是缺省选项,推荐于一般应用.它对罚刚度不太敏感,但是也要求给出一个侵入容差.

能够用罚函数法(关键字选项

(2)=1)这个选项.它推荐应用于单元非常扭曲、大摩擦系数和/或用增大的拉格朗日法收敛行为不好的问题.

26.确定罚刚度

对于面对面接触单元,ANSYS基于单元类型、材料性质和它下面的单元尺寸确定接触刚度.可以用实常数FKN给出接触刚度的一个比例系数或绝对值.

惩罚刚度(FKN)应该足够大,使接触侵入量小。

同时也应足够小,使问题没有病态矩阵.

FKN值通常在0.01~10之间.对于体积变形问题,用值1.0(默认),对于弯曲问题,用值0.1.

27.对称接触

对称接触不如不对称接触有效.然而,许多分析需要用它(典型用于减少侵入).对称接触增加了接触检查点的数目.

对称接触的准则:

目标面和接触面没有明显的区别.

目标面和接触面的网格都粗糙.

注意:

用对称接触时,后处理更困难.接触压力是两个接触单元对的平均值.

28.自接触

对于自接触,使用不对称接触更有效,但是难于预测接触面和目标面.对于自接触,用对称接触时,只要简单地将目标单元和接触单元放在相同的表面上即可.

29.刚体位移

如果在求解中的任一时刻,两个物体没有联系,刚度矩阵就会奇异.ANSYS将会发出一个负主元警告信息.由于物体初始时没有联系,要克服刚体位移有几个选项:

在“恰好碰上”的位置建立几何模型

Ø动力学

Ø位移控制

Ø软弹簧

Ø用不分离接触(关键选项(12),在后面讨论)

Ø调整初始接触条件

30.接触刚度FKN

但对于大多数情况而言,最好用一个合理而不过度精确的刚度值进行第一次求解,然后用10倍于该值的刚度进行第二次求解,如果两者结果相差很小,而迭代数增加很多,那么我们则正好取得了曲线上的突变点,从而获得相当好的结果。

当接触单元的刚度为10e6时,可获得合理精确的结果。

任何大于该值的刚度对下梁的偏移量没有什么影响,而求解所需的迭代数却显著的增加。

对于这个题目,10e6的刚度是很适合的。

但是,如果改变边界条件、网格密度、两梁之间的相对位置、材料特性或梁的几何形状,能获得满意结果的接触刚度值将是不同的。

比如,如果网格密度增加,则接触单元数将增加,每一个单元上的载荷将降低。

如果接触单元数增加两倍,一个合适的接触单元刚度值应为原来的一半。

  为了确定一个较好的接触刚度值,可能需要一些经验。

用户可以按照下面的步骤来进行尝试:

1、开始时取一个较低的值。

低估值要比高估值好,因为由一个较低的接触刚度导致的穿透问题,比过高的接触刚度导致的收敛性困难,要容易解决。

2、对前几个子步进行计算分析,直到最终载荷的一个比例(刚好完全建立接触)。

3、检查每一子步中的穿透量和平衡迭代次数。

如果总体收敛困难是由过大的穿透引起的,那麽可能低估了FKN的值,或者是将FLOLN的值取得大小。

如果总体的收敛困难是由于不平衡力和位移增量达到收敛值时需要过多的迭代次数,而不是由于过大的穿透量引起的,那麽FKN的值可能被估高。

4、按需要调整FKN和FTOLN的值,重新进行完整的分析。

我理解的接触问题求解过程,是一个调整接触刚度的过程,不知理解得是否对。

接触分析,是要通过大量的结果画出一条曲线,选取曲线的最低点,作为最终结果。

31.建立刚-柔接触对

如果想建立一个柔-柔接触对的话,可以将接触的两个面都划分网格,然后再用接触向导建立接触对。

如果想建立一个刚-柔接触对的话,可以先将想定义成柔体的部分划分网格,然后定义接触对就可以了,如果将两个面都划分网格再定义接触对的话就又成了定义柔-柔接触对了。

32.ANSYS坐标系总结

工作平面(WorkingPlane)

工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格)

总体坐标系

在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。

它们位于模型的总体原点。

三种类型为:

CS,0:

总体笛卡尔坐标系

CS,1:

总体柱坐标系

CS,2:

总体球坐标系

数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。

局部坐标系

局部坐标系是用户定义的坐标系。

局部坐标系可以通过菜单路径Workplane>LocalCS>CreateLC来创建。

激活的坐标系是分析中特定时间的参考系。

缺省为总体笛卡尔坐标系。

当创建了一个新的坐标系时,新坐标系变为激活坐标系。

这表明后面的激活坐标系的命令。

菜单中激活坐标系的路径Workplane>ChangeactiveCSto>。

节点坐标系

每一个节点都有一个附着的坐标系。

节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。

节点力和节点边界条件(约束)指的是节点坐标系的方向。

时间历程后处理器/POST26中的结果数据是在节点坐标系下表达的。

而通用后处理器/POST1中的结果是按结果坐标系进行表达的。

例如:

模型中任意位置的一个圆,要施加径向约束。

首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。

这个局部坐标系现在成为激活的坐标系。

然后选择圆上的所有节点。

通过使用"Prep7>Move/Modify>RotateNodalCStoactiveCS",选择节点的节点坐标系的朝向将沿着激活坐标系的方向。

未选择节点保持不变。

节点坐标系的显示通过菜单路径Pltctrls>Symbols>NodalCS。

这些节点坐标系的X方向现在沿径向。

约束这些选择节点的X方向,就是施加的径向约束。

注意:

节点坐标系总是笛卡尔坐标系。

可以将节点坐标系旋转到一个局部柱坐标下。

这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。

可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。

单元坐标系

单元坐标系确定材料属性的方向(例如,复合材料的铺层方向)。

对后处理也是很有用的,诸如提取梁和壳单元的膜力。

单元坐标系的朝向在单元类型的描述中可以找到。

结果坐标系

/Post1通用后处理器中(位移,应力,支座反力)在结果坐标系中报告,缺省平行于总体笛卡尔坐标系。

这意味着缺省情况位移,应力和支座反力按照总体笛卡尔在坐标系表达。

无论节点和单元坐标系如何设定。

要恢复径向和环向应力,结果坐标系必须旋转到适当的坐标系下。

这可以通过菜单路径Post1>Optionsforoutput实现。

/POST26时间历程后处理器中的结果总是以节点坐标系表达。

显示坐标系

显示坐标系对列表圆柱和球节点坐标非常有用(例如,径向,周向坐标)。

建议不要激活这个坐标系进行显示。

屏幕上的坐标系是笛卡尔坐标系。

显示坐标系为柱坐标系,圆弧将显示为直线。

这可能引起混乱。

因此在以非笛卡尔坐标系列表节点坐标之后将显示坐标系恢复到总体笛卡尔坐标系。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1