住宅建筑节能外文翻译中英文.docx

上传人:b****8 文档编号:9597393 上传时间:2023-02-05 格式:DOCX 页数:16 大小:28.14KB
下载 相关 举报
住宅建筑节能外文翻译中英文.docx_第1页
第1页 / 共16页
住宅建筑节能外文翻译中英文.docx_第2页
第2页 / 共16页
住宅建筑节能外文翻译中英文.docx_第3页
第3页 / 共16页
住宅建筑节能外文翻译中英文.docx_第4页
第4页 / 共16页
住宅建筑节能外文翻译中英文.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

住宅建筑节能外文翻译中英文.docx

《住宅建筑节能外文翻译中英文.docx》由会员分享,可在线阅读,更多相关《住宅建筑节能外文翻译中英文.docx(16页珍藏版)》请在冰豆网上搜索。

住宅建筑节能外文翻译中英文.docx

住宅建筑节能外文翻译中英文

住宅建筑节能外文翻译中英文2019

英文

Environmentalandeconomicimplicationsofenergyefficiencyinnewresidentialbuildings:

Amulti-criteriaselectionapproach

DeliaD'Agostino,DannyParker,PacoMelia

Abstract

Thechoiceofthemostappropriatetechnologiesinbuildingsisoftenachallengeatthedesignstage,especiallywhenmanydifferentcriteriaaretakenintoaccount.Consequently,thedecisionprocessreliesoftenononecriteriononly,suchascostsorenergysavings.Weproposeamulti-criteriaapproachbasedonmulti-attributeutilitytheorytoassessalternativeenergyefficiencymeasures,explicitlyconsideringbothenvironmentalandeconomiccriteria.WeapplyittothedesignofanewresidentialbuildinginMilan(Italy),withtheaimtomaximizeCO2 emissionsavingsrelatedtoelectricityandgasconsumption,andtominimizeembodiedenergyandinvestmentcosts.Aftermodellingthebuildingprototype,alternativeenergyefficiencymeasuresareassessedandrankedaccordingtotheselectedcriteria.

Thebuildingoptimizedthroughtheimplementationofthebestperformingmeasuresshowedanoverall90%reductioninoperationalprimaryenergycomparedtothebaselinebuilding.Theinclusionoftheembodiedenergyalteredtheenergyperformancecalculationsresultingin55–67%reductionintotalenergyovera10-yearperiod,and77–82%overa30-yearperiod.Resultspointtotheimportanceofacomprehensiveimplementationofmeasures,suchasthermalimprovements,highefficiencyequipment,appliances,andrenewableenergygeneration.Thepaperdemonstratesthefeasibilityofthisframeworktosupportthedecisionprocessfromamulti-criteriaperspective,proposingaflexiblemethodthatcanbeadaptedtootherbuildingtypes,environmentalconditions,materialsandtechnologies.Italsohighlightstheimportanceofconsideringbothenvironmentalandeconomiccriteriawhendesigninganewbuilding.Itstresseshowtheembodiedenergyshouldbeacriterionfortechnologyselection,ascurrentstrategiestoreduceoperationalenergyoftenincreasetheamountofenergyembodiedintobuildingswithenvironmentalconsequences.

Keywords:

Multi-criteriadecisionmaking,Energyefficiencymeasures,Embodiedenergy,Multi-attributeutilitytheory(MAUT),Buildingmodellingandsimulation,CO2emissionsavings

Introduction

EnergyefficiencyisrecognizedasoneoftheprioritiesoftheEnergyUnionstrategy.Improvingenergyefficiencyisexpectedtoreducegreenhousegas(GHG)emissionsandenergyimportdependency,createjobs,boostenergysecurity,supportresearch,innovationandcompetitiveness.Accountingforapproximately40%ofprimaryenergyand36%ofgreenhouseemissions,thebuildingsectoriscurrentlythelargestend-usesectorinEurope.Inparticular,theresidentialsectorconsumesmorethanaquarteroftotalenergyandaccountsfortwothirdsofbuildingconsumption.

TheEuropeanUnionhaslaunchedapolicyframeworkaimedatreducingenergyconsumptionandobtainingconsiderablesavingsfrombuildings.TheEnergyEfficiencyDirective(EED)andtheRenewableEnergyDirective(RED)containimportantprovisions,butamajorstepforwardisrepresentedbytheEnergyPerformanceofBuildingsDirectiverecast.TheDirectiveestablishestheimplementationofnearlyzeroenergybuildings(NZEBs)asthebuildingtargetfrom2018onwards.NZEBsaredefinedasbuildingswithaveryhighenergyperformance,whereenergyrequirementsshouldmostlybecoveredbyrenewableenergysources.Anotherimportantnoveltyistheintroductionofcost-optimality.Amethodologyisdescribedtoderivecost-optimallevelsofminimumenergyperformancerequirements.Thecost-optimallevelrepresentstheenergyperformancewhichleadstothelowestcostoverthebuildinglifecycle.

CombiningNZEBsandcost-optimalityremainschallengingandoftenperformedonlyataresearchlevel.Additionally,althoughdifferentstudieshavehighlightedthatreachingtheNZEBstargetisachievable,itisnotalwaysproventhattheselecteddesignchoicesarethemostsuitablefrombothanenvironmentalandeconomicperspective.

Moreover,improvingenergyefficiencyinbuildingshasbeenmainlyfocusedonreducingoperationalemissions(e.g.linkedtoheating,ventilation,airconditioningsystems(HVAC),domestichotwater,lighting,appliances),butitisestimatedthatabout30%oftheenergyconsumedthroughoutthelifetimeofabuildingiswithinitsembodiedenergy.

Researchaims

Thisstudyaimsatillustratingamethodabletoselectthetechnologymeasuresthataremostconvenientfromaneconomicandenvironmentalperspective.AnewresidentialbuildinglocatedinMilan(Italy)ischosenasacasestudy.Anassessmentapproachbasedonmulti-attributeutilitytheory(MAUT)hasbeendevelopedtosupportamulti-criteriaevaluationofselectedtechnologymeasures.Thestudyconsidersatthesametimetheminimizationofembodiedenergyandinvestmentcosts,aswellasthemaximizationofelectricityandgassavingsassociatedwitheachmeasure.Theproposedapproachallowsacomparisonofalternativetechnologiestobepotentiallyimplementedinthebuildingprototype.Theresearchinvolvesthefollowingsteps:

•identificationofappropriatecriteriarepresentingthedifferentobjectivesofthedecisionandtheirorganizationintoahierarchy;

•establishmentofmathematicalfunctionstoevaluatethesatisfaction(utility)associatedwitheachalternativewithrespecttodifferentcriteria;

•determinationofasetofweightsthatrepresenttherelativeimportanceofeachcriteriontotheoverallutility;

•evaluationandrankingofthealternatives.

Thebaselineandtheoptimizedbuildingarethensimulatedandcomparedintermsofenergyconsumption,costsandCO2 emissions.Finally,asensitivityanalysisisperformedtoassesshowtheoutputsareaffectedbytheuncertaintyontherelativeimportanceoftheselectedcriteriaaswellasembodiedenergyestimations.

Literaturereview

Aliteraturereviewisnowgiveninrelationtothemaintopicslinkedtothispaper:

embodiedenergy,technologymeasures,andmulti-criteriadecision-makingmethods.

 Embodiedenergy

Althoughlargelyignored,theembodiedenergycomprisesthematerialsusedinthebuildingandtechnicalinstallations,aswellastheenergyconsumedatthetimeofconstructionorrenovationofthebuilding.Inparticular,itincludes:

theenergyusedtoextractrawresources,processmaterials,assembleproductcomponents,transportbetweeneachstep,construction,maintenanceandrepair,deconstructionanddisposal.Theestimatedembodiedenergydependsonfactorssuchasbuildingage,climate,andmaterials.

Thebuildingenvelopeisakeyelementforbothembodiedandoperationalenergyinbuildings.Inmoredetail,thebuildingenvelope(floors,walls,roof,andfinishes)contributesforabout48–50%totheoverallembodiedenergyofastandardhouse.Althoughenvelopeimprovementscontributetoloweroperationalenergyconsumption,thereareconcernsabouttheglobalwarmingpotentialandotherimpactsthatsometechnologiescanhaveontheenvironment.

EmbodiedenergyandcostsofrecycledandreusedmaterialswidelyvaryRecentliteratureemphasizesstandardprotocolsfortheestimationofembodiedenergy.Althoughtherearestandards,suchasEN15978andsubsequentstandards,questionsonembodiedenergyquantificationremain.Forinstance,thereisextensiveuncertaintyregardingtheembodiedenergyevaluation,mainlylinkedtoavailabledatasources,estimationmethodologies,variabilityoftimeandlocation.

Bothoperationalenergyandembodiedenergyaresubjecttoperformancegaps.Thegapcanbebetweensimulatedandmonitoreddatainrelationtotheoperationalenergy.Itissubjecttomeasurementboundariesandempiricaldatasourcesforembodiedenergydata.Relativetobuildingsimulation,therehavefrequentlybeenperformancegapswheresavingsfromsimulationhavebeenhigherthanthatrealizedinrealbuildings.However,therearemanyeffortstoaddresstheseshortcomingsthroughtheuseofrealmonitoreddatatoguideandvalidatesimulationinputs.

ThemostcommonlyusedmeanstoestimateembodiedenergyformaterialsorproductsistheLifeCycleAssessment(LCA)framework.Thisisastandardizedenvironmentaltooltoquantifytheenergy,carbonorwaterliabilitieswhichaproductorprocessimposesonthephysicalenvironment.Thisisusuallycarriedoutaslife-cycleenergyassessment,aformofLCAwhereenergyconsumptionofthevariousphasesismeasuredtoaccountforallenergyinputsoverthebuildinglife.Differencesinembodiedenergyfactorsariseinembodiedenergyestimationsduetodifferencesinscopeaswellasinthetechnologyusedformaterialproductionandtransportation.

Besidestheembodiedenergy,itisworthmentioningtheembodiedcarbonwhichconsidershowGHGsarereleasedthroughoutthesupplychaintoprovideamaterialorservice.Itrepresentsthecarbonfootprintofamaterialorprocess.Itisanalternativemetricwhichcanbemorecomprehensiveinaccountingfortheemissionsintensityoftheenergycarrier.

Todate,anumberofstudiesconsidertheembodiedcarbonorembodiedenergyasacriteriafortechnologyselectionalongwithenergysavingsandcostsinlowenergybuildings.Inparticular,Thormarkandothershaveshownthatverylowenergybuildingstypicallyhaveembodiedenergiesthataremuchhigherthanconventionalstructures.Theadditionalembodiedenergymustberecapturedbysuccessfulreductionsinoperationalenergy.AsbuildingsbecomemoreefficientorapproachNZEBs,embodiedenergycanbecomemorethanhalfthetotalbuildingenergyoveritsusefullife.FortheevaluationofaPassiveHousedesign,embodiedenergyhasbeenfoundtobesohightha

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 文学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1