数学概览.docx

上传人:b****8 文档编号:9585103 上传时间:2023-02-05 格式:DOCX 页数:84 大小:257.08KB
下载 相关 举报
数学概览.docx_第1页
第1页 / 共84页
数学概览.docx_第2页
第2页 / 共84页
数学概览.docx_第3页
第3页 / 共84页
数学概览.docx_第4页
第4页 / 共84页
数学概览.docx_第5页
第5页 / 共84页
点击查看更多>>
下载资源
资源描述

数学概览.docx

《数学概览.docx》由会员分享,可在线阅读,更多相关《数学概览.docx(84页珍藏版)》请在冰豆网上搜索。

数学概览.docx

数学概览

数学是研究现实世界中数量关系和空间形式的科学。

简单地说,就是研究数和形的科学。

   由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。

在中国,最迟在商代,即已出现用十进制数字表示大数的方法;至秦汉之际,即已出现完满的十进位制。

在不晚于公元一世纪的《九章算术》中,已载了只有位值制才有可能进行的开平方、开立方的计算法则,并载有分数的各种运算以及解线

性联立方程组的方法,还引入了负数概念。

   刘徽在他注解的《九章算术》中,还提出过用十进制小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪斯蒂文以后)十进制小数才获通用。

在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率的一般方法。

   虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。

至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。

   早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。

古希腊发现了有非分数的数,即现称的无理数。

16世纪以来,由于解高次方程又出现了复数。

在近代,数的概念更进一步抽象化,并依据数的不同运算规律,对一般的数系统进行了独立的理论探讨,形成数学中的若干不同分支。

   开平方和开立方是解最简单的高次方程所必须用到的运算。

在《九章算术》中,已出现解某种特殊形式的二次方程。

发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。

与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。

   在中国以外,九世纪阿拉伯的花拉米子的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。

中国古代数学致力于方程的具体求解,而源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。

   16世纪时,韦达以文字代替方程系数,引入了代数的符号演算。

对代数方程解的性质进行探讨,是从线性方程组引出的行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗华理论与群论的创立。

而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集合的理论研究。

   形的研究属于几何学的范畴。

古代民族都具有形的简单概念,并往往以图画来表示,而图形之所以成为数学对象是由于工具的制作与测量的要求所促成的。

规矩以作圆方,中国古代夏禹泊

水时即已有规、矩、准、绳等测量工具。

   墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。

《周髀算经》与刘徽的《海岛算经》给出了用矩观测天地的一般方法与具体公式。

在《九章算术》及刘徽注解的《九章算术》中,除勾股定理外,还提出了若干一般原理以解决多种问题。

例如求任意多边形面积的出入相补原理;求多面体的体积的阳马鳖需的二比一原理(刘徽原理);5世纪祖(日恒)提出的用以求曲形体积特别是球的体积的“幂势既同则积不容异”的原理;还有以内接正多边形逼近圆周长的极限方法(割圆术)。

但自五代(约10世纪)以后,中国在几何学方面的建树不多。

   中国几何学以测量和计算面积、体积的量度为中心任务,而古希腊的传统则是重视形的性质与各种性质间的相互关系。

欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响遍及于整个数学的发展。

特别是平行公理的研究,导致了19世纪非欧几何的产生。

   欧洲自文艺复兴时期起通过对绘画的透视关系的研究,出现了射影几何。

18世纪,蒙日应用分析方法对形进行研究,开微分几何学的先河。

高斯的曲面论与黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;19世纪克莱因以群的观点对几何学进行统一处理。

此外,如康托尔的点集理论,扩大了形的范围;庞加莱创立了拓扑学,使形的连续性成为几何研究的对象。

这些都使几何学面目一新。

   在现实世界中,数与形,如影之随形,难以分割。

中国的古代数学反映了这一客观实际,数与形从来就是相辅相成,并行发展的。

例如勾股测量提出了开平方的要求,而开平方、开立方的方法又奠基于几何图形的考虑。

二次、三次方程的产生,也大都来自几何与实际问题。

至宋元时代,由于天元概念与相当于多项式概念的引入,出现了几何代数化。

   在天文与地理中的星表与地图的绘制,已用数来表示地点,不过并未发展到坐标几何的地步。

在欧洲,十四世纪奥尔斯姆的著作中已有关于经纬度与函数图形表示的萌芽。

十七世纪笛卡尔提出了系统的把几何事物用代数表示的方法及其应用。

在其启迪之下,经莱布尼茨、牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源。

这是数学史上的一件大事。

   在十七世纪中,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换(如投影),还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代。

   十八世纪以来,以解析几何与微积分这两个有力工具的创立为契机,数学以空前的规模迅猛发展,出现了无数分支。

由于自然界的客观规律大多是以微分方程的形式表现的,所以微分方程的研究一开始就受到很大的重视。

   微分几何基本上与微积分同时诞生,高斯与黎曼的工作又产生了现代的微分几何。

19、20世纪之交,庞加莱创立了拓扑学,开辟了对连续现象进行定性与整体研究的途径。

对客观世界中

随机现象的分析,产生了概率论。

第二次世界大战军事上的需要,以及大工业

与管理的复杂化产生了运筹学、系统论、控制论、数理统计学等学科。

实际问题要求具体的数值解答,产生了计算数学。

选择最优途径的要求又产生了各种优化的理论、方法。

   力学、物理学同数学的发展始终是互相影响互相促进的,特别是相对论与量子力学推动了微分几何与泛函分析的成长。

此外在19世纪还只用到一次方程的化学和几乎与数学无缘的生物学,都已要用到最前沿的一些数学知识。

   十九世纪后期,出现了集合论,还进入了一个批判性的时代,由此推动了数理逻辑的形成与发展,也产生了把数学看作是一个整体的各种思潮和数学基础学派。

特别是1900年,德国数学家希尔伯特在第二届国际数学家大会上的关于当代数学重要问题的演讲,以及三十年代开拓的,以结构概念统观数学的法国布尔巴基学派的兴起,对二十世纪数学的发展产生了巨大、深远的影响,科学的数学化一语也开始为人们所乐道。

   数学的外围向自然科学、工程技术甚至社会科学中不断渗透扩大,并从中吸取营养,出现了一些边缘数学。

数学本身的内部需要也孽生了不少新的理论与分支。

同时其核心部分也在不断巩固提高并有时作适当调整以适应外部需要。

总之,数学这棵大树茁壮成长,既枝叶繁茂又根深蒂固。

   在数学的蓬勃发展过程中,数与形的概念不断扩大且日趋抽象化,以至于不再有任何原始计数与简单图形的踪影。

虽然如此,在新的数学分支中仍有着一些对象和运算关系借助于几何术语来表示。

如把函数看成是某种空间的一个点之类。

这种做法之所以行之有效,归根结底还是因为数学家们已经熟悉了那种简易的数学运算与图形关系,而后者又有着长期深厚的现实基础。

而且,即使是最原始的数字如1、2、3、4,以及几何形象如点与直线,也已经是经过人们高度抽象化了的概念。

因此如果把数与形作为广义的抽象概念来理解,则前面提到的把数学作为研究数与形的科学这一定义,对于现阶段的近代数学,也是适用的。

   由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界的。

生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键性的作用。

理论上的丰富提高与应用的广泛深入在数学史上始终是相伴相生,相互促进的。

   但由于各民族各地区的客观条件不同,数学的具体发展过程是有差异的。

大体说来,古代中华民族以竹为筹,以筹运算,自然地导致十进位值制的产生。

计算方法的优越有助于对实际问题的具体解决。

由此发展起来的数学形成了一个以构造性、计算性、程序化与机械化为其特色,以从问题出发进而解决问题为主要目标的独特体系。

而在古希腊则着重思维,追求对宇宙的了解。

由此发展成以抽象了的数学概念与性质及其相互间的逻辑依存关系为研究对象的公理化演绎体系。

   中国的数学体系在宋元时期达到高峰以后,开始陷于停顿且几至消失。

而在欧洲,经过文艺复兴运动、宗教革命、资产阶级革命等一系列的变革,导致了工业革命与技术革命。

机器的使用,不论中外都由来已久。

但在中国,则由于明初被帝王斥为奇技淫巧而受阻抑。

   在欧洲,则由于工商业的发展与航海的刺激而得到发展,机器使人们从繁重的体力劳动中解放出来,并引导到理论力学和一般的运动和变化的科学研究。

当时的数学家都积极参与了这些变革以及相应数学问题的解决,产生了积极的效果。

解析几何与微积分的诞生,成为数学发展的一个转折点。

17世纪以来数学的飞跃,大体上可以看成是这些成果的延续与发展。

   20世纪出现了各种崭新的技术,产生了新的技术革命,特别是电子计算机的出现,使数学又面临了一个新的时代。

这一时代的特点之一就是部分脑力劳动的逐步机械化。

与17世纪以来以围绕连续、极限等概念为主导思想与方法的数学不同,由于计算机研制与应用的需要,离散数学与组合数学开始受到重视。

   计算机对数学的作用已不仅仅只限于数值计算,也开始更多的涉及符号运算(包括机器证明等数学研究)。

为了与计算机更好地配合,数学对于构造性、计算性、程序化与机械化的要求也显得颇为突出。

   例如,代数几何是一门高度抽象化的数学,而最近出现的计算性代数几何与构造性代数几何的提法,即其端倪之一。

总之,数学正随着新的技术革命而不断发展。

 

算数

算术是数学中最古老、最基础和最初等的部分。

它研究数的性质及其运算。

   “算术”这个词,在我国古代是全部数学的统称。

至于几何、代数等许多数学分支学科的名称,都是后来很晚的时候才有的。

   国外系统地整理前人数学知识的书,要算是希腊的欧几里得的《几何原本》最早。

《几何原本》全书共十五卷,后两卷时候人增补的。

全书大部分是属于几何知识,在第七、八、九卷中专门讨论了数的性质和运算,属于算术的内容。

   现在拉丁文的“算术”这个词是由希腊文的“数和数(音属,shû三音)数的技术”变化而来的。

“算”字在中国的古意也是“数”的意思,表示计算用的竹筹。

中国古代的复杂数字计算都要用算筹。

所以“算术”包含当时的全部数学知识与计算技能,流传下来的最古老的《九章算术》

以及失传的许商《算术》和杜忠《算术》,就是讨论各种实际的数学问题的求解方法。

   关于算数的产生,还是要从数谈起。

数是用来表达、讨论数量问题的,有不同类型的量,也就随着产生了各种不同类型的数。

远在古代发展的最初阶段,由于人类日常生活与生产实践中的需要,在文化发展的最初阶段就产生了最简单的自然数的概念。

   自然数的一个特点就是由不可分割的个体组成。

比如说树和羊这两种事物,如果说两棵树,就是一棵再一颗;如果有三只羊,就是一只、一只又一只。

但不能说有半棵树或者半只羊,半棵树或者半只羊充其量只能算是木材或者是羊肉,而不能算作树和羊。

   不过,自然数不足以解决生活和生产中常见的分份问题,因此数的概念产生了第一次扩张。

分数是对另一种类型的量的分割而产生的。

比如,长度就是一种可以无限地分割的量,要表示这些量,就只有用分数。

   从已有的文献可知,人类认识自然数和分数的历史是很久的。

比如约公元前2000年流传下来的古埃及莱茵德纸草书,就记载有关于分数的计算方法;中国殷代遗留下来的甲骨文中也有很多自然数,最大的数字是三万,并且全部是应用十进位制的位置计数法。

   自然数和分数具有不同的性质,数和数之间也有不同的关系,为了计算这些数,就产生了加、减、乘、除的方法,这四种方法就是四则运算。

   把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。

   在算术的发展过程中,由于实践和理论上的要求,提出了许多新问题,在解决这些新问题的过程中,古算术从两个方面得到了进一步的发展。

   一方面在研究自然数四则运算中,发现只有除法比较复杂,有的能除尽,有的除不尽,有的数可以分解,有的数不能分解,有些数又大于1的公约数,有些数没有大于1的公约数。

为了寻求这些数的规律,从而发展成为专门研究数的性质、脱离了古算术而独立的一个数学分支,叫做整数论,或叫做初等数论,并在以后又有新的发展。

  另一方面,在古算术中讨论各种类型的应用问题,以及对这些问题的各种解法。

在长期的研究中,很自然地就会启发人们寻求解这些应用问题的一般方法。

也就是说,能不能找到一般的更为普遍适用的方法来解决同样类型的应用问题,于是发明了抽象的数学符号,从而发展成为数学的另一个古老的分支,指就是初等代数。

  数学发展到现在,算术已不再是数学的一个分支,现在我们通常提到的算术,只是作为小学里的一个教学科目,目的是使学生理解和掌握有关数量关系和空间形式的最基础的知识,能够正确、迅速地进行整数、小数、分数的四则运算,初步了解现代数学中的一些最简单的思想,具有初步的逻辑思维能力和空间观念。

   现代小学数学的具体内容,基本上还是古代算术的知识,也就是说,古代算术和现代算术的许多内容上是相同的。

不过现代算术和古代算术也还存在着区别。

   首先,算术的内容是古代的成人包括数学家所研究的对象,现在这些内容已变成了少年儿童的数学。

其次,在现代小学数学里,总结了长期以来所归结出来的基本运算性质,即加法、乘法的交换律和结合律,以及乘法对加法的分配律。

这五条基本运算定律,不仅是小学数学里所学习的数运算的重要性质,也是整个数学里,特别是代数学里着重研究的主要性质。

   第三,在现代的小学数学里,还孕育着近代数学里的集合和函数等数学基础概念的思想。

比如,和、差、积、商的变化,数和数之间的对应关系,以及比和比例等。

   另外,现在小学数学里,还包含有十六世纪才出现的十进小数和它们的四则运算。

应当提出的是十进小数不是一种新的数,而可以被看作是一种分母是10的方幂的分数的另一种写法。

我们在这里把算术列成第一个分支,主要是想强调在古代全部数学就叫做算术,现代的代数学、数论等最初就是由算术发展起来的。

后来,算学、数学的概念出现了,它代替了算术的含义,包括了全部数学,算术就变成了一个分支了。

因此,也可以说算术是最古老的分支。

初等代数

初等代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。

   初等代数是更古老的算术的推广和发展。

在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数。

   代数是由算术演变来的,这是毫无疑问的。

至于什么年代产生的代数学这门学科,就很不容易说清楚了。

比如,如果你认为“代数学”是指解ax²+bx+c=0这类用符号表示的方程的技巧。

那么,这种“代数学”是在十六世纪才发展起来的。

   如果我们对代数符号不是要求象现在这样简练,那么,代数学的产生可上溯到更早的年代。

西方人将公元前三世纪古希腊数学家刁藩都看作是代数学的鼻祖。

而在中国,用文字来表达的代数问题出现的就更早了。

   “代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年。

那年,清代数学家里李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。

当然,代数的内容和方法,我国古代早就产生了,比如《九章算术》中就有方程问题。

   初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。

它的研究方法是高度计算性的。

   要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。

所以初等代数的一个重要内容就是代数式。

由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。

代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。

通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。

   在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。

这是初等代数的又一重要内容,就是数的概念的扩充。

   有了有理数,初等代数能解决的问题就大大的扩充了。

但是,有些方程在有理数范围内仍然没有解。

于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。

   那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?

数学家们说:

不用了。

这就是代数里的一个著名的定理—代数基本定理。

这个定理简单地说就是n次方程有n个根。

1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。

   把上面分析过的内容综合起来,组成初等代数的基本内容就是:

   三种数——有理数、无理数、复数

   三种式——整式、分式、根式

   中心内容是方程——整式方程、分式方程、根式方程和方程组。

   初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。

比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。

这些都只是历史上形成的一种编排方法。

   初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。

代数运算的特点是只进行有限次的运算。

全部初等代数总起来有十条规则。

这是学习初等代数需要理解并掌握的要点。

   这十条规则是:

   五条基本运算律:

加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;

   两条等式基本性质:

等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;

   三条指数律:

同底数幂相乘,底数不变指数相加;指数的乘方等于底数不变指数想乘;积的乘方等于乘方的积。

   初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。

这时候,代数学已由初等代数向着高等代数的方向发展了。

初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。

沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。

高等代数

   高等代数是代数学发展到高级阶段的总称,它包括许多分支。

现在大学里开设的高等代数,一般包括两部分:

线性代数初步、多项式代数。

   高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。

这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。

   集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。

向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。

 

高等代数发展简史

   代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。

   人们很早就已经知道了一元一次和一元二次方程的求解方法。

关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。

到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。

   在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。

   在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。

所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。

   三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。

这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。

遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。

   到了十九世纪初,挪威的一位青年数学家阿贝尔(1802~1829)证明了五次或五次以上的方程不可能有代数解。

既这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数运算表示出来。

阿贝尔的这个证明不但比较难,而且也没有回答每一个具体的方程是否可以用代数方法求解的问题。

   后来,五次或五次以上的方程不可能有代数解的问题,由法国的一位青年数学家伽罗华彻底解决了。

伽罗华20岁的时候,因为积极参加法国资产阶级革命运动,曾两次被捕入狱,1832年4月,他出狱不久,便在一次私人决斗中死去,年仅21岁。

   伽罗华在临死前预料自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿。

他在给朋友舍瓦利叶的信中说:

“我在分析方面做出了一些新发现。

有些是关于方程论的;有些是关于整函数的……。

公开请求雅可比或高斯,不是对这些定理的正确性而是对这些定理的重要性发表意见。

我希望将来有人发现消除所有这些混乱对它们是有益的。

   伽罗华死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中。

他的论文手稿过了14年,才由刘维尔(1809~1882)编辑出版了他的部分文章,并向数学界推荐。

   随着时间的推移,伽罗华的研究成果的重要意义愈来愈为人们所认识。

伽罗华虽然十分年轻,但是他在数学史上做出的贡献,不仅是解决了几个世纪以来一直没有解决的高次方程的代数解的问题,更重要的是他在解决这个问题中提出了“群”的概念,并由此发展了一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革。

从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步的发展。

在数学大师们的经典著作中,伽罗华的论文是最薄的,但他的数学思想却是光辉夺目的。

高等代数的基本内容

   代数学从高等代数总的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:

多项式代数、线性代数等。

代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。

虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。

因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。

比如群、环、域等。

   多项式是一类最常见、最简单的函数,它的应用非常广泛。

多项式理论是以代数

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1