最新九年级数学上册 24圆周角 3课时圆的内接四边形同步练习新版苏科版.docx
《最新九年级数学上册 24圆周角 3课时圆的内接四边形同步练习新版苏科版.docx》由会员分享,可在线阅读,更多相关《最新九年级数学上册 24圆周角 3课时圆的内接四边形同步练习新版苏科版.docx(20页珍藏版)》请在冰豆网上搜索。
最新九年级数学上册24圆周角3课时圆的内接四边形同步练习新版苏科版
第2章对称图形——圆
2.4 第3课时 圆的内接四边形
知识点 圆内接四边形的性质
1.如图2-4-30所示,四边形ABCD为⊙O的内接四边形.若∠BCD=110°,则∠BAD的度数为( )
A.140°B.110°C.90°D.70°
图2-4-30
图2-4-31
2.如图2-4-31,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD=105°,则∠DCE的大小是( )
A.115°B.105°C.100°D.95°
3.在圆内接四边形ABCD中,若∠A∶∠B∶∠C=2∶3∶4,则∠D的度数是( )
A.60°B.90°C.120°D.30°
4.如图2-4-32,四边形ABCD内接于⊙O.若四边形ABCO是平行四边形,则∠ADC的大小为( )
A.45°B.50°C.60°D.75°
图2-4-32
图2-4-33
.如图2-4-33,已知AB是⊙O的直径,C,D是⊙O上两点,且∠D=130°,则∠BAC=________°.
6.如图2-4-34,四边形ABCD内接于⊙O.若∠BOD=130°,则∠DCE=________°.
图2-4-34
7.如图2-4-35,四边形ABCD为圆的内接四边形,DA,CB的延长线交于点P,∠P=30°,∠ABC=100°,则∠C=________°.
图2-4-35
图2-4-36
8.如图2-4-36,△ABC为⊙O的内接等边三角形,D为⊙O上一点,则∠ADB=________°.
9.如图2-4-37,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC=BE.求证:
△ADE是等腰三角形.
图2-4-37
10.已知:
如图2-4-38,四边形ABCD是圆的内接四边形,延长AD,BC相交于点E,F是BD延长线上的点,且DE平分∠CDF.求证:
AB=AC.
图2-4-38
11.[2016·淮安清河区二模]如图2-4-39,在⊙O的内接五边形ABCDE中,∠CAD=35°,∠AED=115°,则∠B的度数是( )
A.50°B.75°C.80°D.100°
图2-4-39
图2-4-40
12.如图2-4-40,⊙O是钝角三角形ABC的外接圆,连接OC.已知∠BAC=y°,∠BCO=x°,则y与x之间的函数表达式为______________(不必写出自变量的取值范围).
13.教材练习第3题变式如图2-4-41,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=________.
14.[2016·南京高淳区一模]四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为________.
图2-4-41
图2-4-42
15.[2016·南京溧水区一模]如图2-4-42,在⊙O的内接四边形ABCD中,AB=AD,∠C=110°.点E在
上,则∠E=________°.
16.如图2-4-43,AD为圆内接三角形ABC的外角∠EAC的平分线,它与圆交于点D,F为BC上的点.
(1)求证:
DB=DC;
(2)请你再补充一个条件使直线DF一定经过圆心,并说明理由.
图2-4-43
17.如图2-4-44,⊙O的内接四边形ABCD两组对边的延长线分别相交于点E,F.
(1)若∠E=∠F,求证:
∠ADC=∠ABC;
(2)若∠E=∠F=42°,求∠A的度数;
(3)若∠E=α,∠F=β,且α≠β,请你用含有α,β的代数式表示∠A的大小.
图2-4-44
详解详析
1.D [解析]∵四边形ABCD为⊙O的内接四边形,
∴∠BCD+∠BAD=180°(圆内接四边形的对角互补).
又∵∠BCD=110°,
∴∠BAD=70°.故选D.
2.B [解析]∵四边形ABCD是圆内接四边形,
∴∠BAD+∠BCD=180°,
而∠BCD+∠DCE=180°,
∴∠DCE=∠BAD.
而∠BAD=105°,
∴∠DCE=105°.
故选B.
3.B [解析]∵∠A∶∠B∶∠C=2∶3∶4,
∴设∠A=2x,则∠B=3x,∠C=4x.
∵四边形ABCD为圆内接四边形,
∴∠A+∠C=180°,
即2x+4x=180°,解得x=30°,
∴∠B=3x=90°,
∴∠D=180°-∠B=180°-90°=90°.故选B.
4.C
5.40 [解析]∵AB是⊙O的直径,
∴∠ACB=90°.
∵∠B=180°-∠D=50°,
∴∠BAC=90°-∠B=40°.
6.65 [解析]∵∠BOD=130°,
∴∠A=
∠BOD=65°.
∵∠A+∠BCD=180°,∠DCE+∠BCD=180°,
∴∠DCE=∠A=65°.
7.70 [解析]∵∠ABC=100°,∠P=30°,
∴∠PAB=∠ABC-∠P=70°.
∵四边形ABCD为圆的内接四边形,
∴∠C+∠BAD=180°.
∵∠BAD+∠PAB=180°,
∴∠C=∠PAB=70°.
8.120.
9.证明:
∵A,B,C,D是⊙O上的四点,
∴四边形ABCD是⊙O的内接四边形,
∴∠A+∠DCB=180°.
又∵∠BCE+∠DCB=180°,
∴∠A=∠BCE.
∵BC=BE,
∴∠BCE=∠E,∴∠A=∠E,
∴AD=DE,即△ADE是等腰三角形.
10.证明:
∵四边形ABCD是圆内接四边形,
∴∠ABC+∠ADC=180°.
∵∠ADC+∠CDE=180°,
∴∠ABC=∠CDE.
∵∠FDE=∠ADB=∠ACB,∠CDE=∠FDE,∴∠ABC=∠ACB,
∴AB=AC.
11.D [解析]∵四边形ACDE是圆内接四边形,
∴∠AED+∠ACD=180°.
∵∠AED=115°,
∴∠ACD=65°.
∵∠CAD=35°,
∴∠ADC=80°.
∵四边形ABCD是圆内接四边形,
∴∠B+∠ADC=180°,
∴∠B=100°,故选D.
12.y=x+90
13.140°
14.130°或50°
15.125
16.
(1)证明:
∵∠DCB+∠BAD=180°,∠BAD+∠DAE=180°,
∴∠DCB=∠DAE.
∵∠DBC=∠CAD,∠CAD=∠DAE,
∴∠DBC=∠CAD=∠DAE=∠DCB,
∴DB=DC.
(2)答案不唯一,如:
若F为BC的中点,则DF经过圆心.
理由:
∵△DBC是等腰三角形,F是BC的中点,
∴DF是底边BC的垂直平分线.
∵圆内接三角形的圆心是三边垂直平分线的交点,
∴DF必过圆心.
17.
(1)证明:
∵∠E=∠F,∠ECD=∠FCB,
∴∠E+∠ECD=∠F+∠FCB,
即∠ADC=∠ABC.
(2)∵∠A+∠BCD=180°,∠ECD+∠BCD=180°,
∴∠A=∠ECD.
∵∠EDC=∠A+∠F,
∠EDC+∠E+∠ECD=180°,
∴2∠A+∠E+∠F=180°.
又∵∠E=∠F=42°,∴∠A=48°.
(3)由
(2)中的结论可知2∠A+∠E+∠F=180°,
∴2∠A+α+β=180°,解得∠A=90°-
(α+β).
第2章对称图形——圆
图2-Y-1
1.[2017·徐州]如图2-Y-1,点A,B,C均在⊙O上,∠AOB=72°,则∠ACB=( )
A.28° B.54°
C.18° D.36°
2.[2017·宿迁]若将半径为12cm的半圆形纸片拼成一个圆锥的侧面,则这个圆锥的底面圆半径是( )
A.2cmB.3cmC.4cmD.6cm
3.[2016·南京]已知正六边形的边长为2,则它的内切圆的半径为( )
A.1B.
C.2D.2
图2-Y-2
4.[2017·苏州]如图2-Y-2,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D,E是⊙O上一点,且
=
,连接OE,过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为( )
A.92°B.108°C.112°D.124°
5.[2017·南京]过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )
A.(4,
)B.(4,3)C.(5,
)D.(5,3)
6.[2017·连云港]如图2-Y-3所示,一动点从半径为2的⊙O上的点A0出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从点A2出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处……按此规律运动到点A2017处,则点A2017与点A0之间的距离是( )
A.4B.2
C.2D.0
图2-Y-3
图2-Y-4
7.[2017·扬州]如图2-Y-4,已知⊙O是△ABC的外接圆,连接AO.若∠B=40°,则∠OAC=________°.
8.[2016·南京]如图2-Y-5,扇形OAB的圆心角为122°,C是AB上一点,则∠ACB=________°.
图2-Y-5
图2-Y-6
9.[2017·镇江]如图2-Y-6,AB是⊙O的直径,AC与⊙O相切,CO交⊙O于点D.若∠CAD=30°,则∠BOD=________°.
10.[2016·泰州]如图2-Y-7,⊙O的半径为2,点A,C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=
,则图中阴影部分的面积为________.
图2-Y-7
图2-Y-8
11.[2017·盐城]如图2-Y-8,将⊙O沿弦AB折叠,点C在
上,点D在
上.若∠ACB=70°,则∠ADB=________°.
12.[2016·南通]已知:
如图2-Y-9,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.
(1)求∠AOB的度数;
(2)若⊙O的半径为2cm,求线段CD的长.
图2-Y-9
13.[2017·淮安]如图2-Y-10,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA长为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得EF=BF,EF与AC交于点C.
(1)试判断直线EF与⊙O的位置关系,并说明理由;
(2)若OA=2,∠A=30°,求图中阴影部分的面积.
图2-Y-10
14.[2016·宿迁]如图2-Y-11①,在△ABC中,点D在边BC上,∠ABC∶∠ACB∶∠ADB=1∶2∶3,⊙O是△ABD的外接圆.
(1)求证:
AC是⊙O的切线;
(2)当BD是⊙O的直径时(如图②),求∠CAD的度数.
图2-Y-11
15.[2017·盐城]如图2-Y-12,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A,D,E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.
(1)求证:
BC是⊙F的切线;
(2)若点A,D的坐标分别为(0,-1),(2,0),求⊙F的半径;
(3)试探究线段AG,AD,CD三者之间满足的等量关系,并证明你的结论.
图2-Y-12
详解详析
1.D [解析]根据同弧所对的圆周角等于圆心角的一半,得∠ACB=
∠AOB=
×72°=36°.故选D.
2.D 3.B
4.C [解析]连接OD.∵∠ACB=90°,∠A=56°,∴∠B=34°.在⊙O中,∵
=
,
∴∠COE=∠COD=2∠B=68°.又∵OE⊥EF,∠OCF=∠ACB=90°,∴∠F=112°.故选C.
5.A [解析]根据题意,可知线段AB的垂直平分线为直线x=4,所以圆心的横坐标为4,然后设圆的半径为r,则根据勾股定理可知r2=22+(5-2-r)2,解得r=
,因此圆心的纵坐标为5-
=
,因此圆心的坐标为(4,
).
6.A [解析]如图所示,当动点运动到点A6处时,与点A0重合,2017÷6=336……1,即点A2017与点A1重合,点A2017与点A0之间的距离即A0A1的长度,为⊙O的直径,故点A2017与点A0之间的距离是4,因此选A.
7.50 [解析]根据“同弧所对的圆周角等于它所对圆心角的一半”,连接OC,便有∠AOC=2∠B=80°,再由OA=OC,根据“等边对等角”及“三角形内角和定理”可以求得∠OAC=50°.
8.119
9.120 [解析]∵AB是⊙O的直径,AC与⊙O相切,∴AC⊥AO,即∠CAO=90°.∵∠CAD=30°,∴∠DAO=60°,∴∠BOD=2∠DAO=120°.故答案为120.
10.
[解析]如图,连接AO,CO,则AO=CO=2.∵∠ABD=∠CDB=90°,AB=1,CD=
,∴OD=1,BO=
,∴S△ABO=S△ODC,∠AOB=30°,∠COD=60°,∴∠AOC=180°-60°+30°=150°,∴S阴影部分=S扇形OAC=
=
.故答案为
.
11.110 [解析]如图,设点D′是点D折叠前的位置,连接AD′,BD′,则∠ADB=∠D′.在圆内接四边形ACBD′中,∠ACB+∠D′=180°,所以∠D′=180°-70°=110°,所以∠ADB=110°.
12.解:
(1)∵OC平分∠AOB,
∴∠AOC=∠COB.
∵AM切⊙O于点A,∴OA⊥AM.
又BD⊥AM,
∴OA∥BD,∴∠AOC=∠OCB.
又∵OC=OB,
∴∠OCB=∠B,
∴∠B=∠OCB=∠COB=60°,
∴∠AOB=120°.
(2)过点O作OE⊥BC于点E,由
(1)得△OBC为等边三角形.
∵⊙O的半径为2cm,
∴BC=2cm,∴CE=
BC=1cm.
由已知易得四边形AOED为矩形,
∴ED=OA=2cm,
则CD=ED-CE=1cm.
13.解:
(1)直线EF与⊙O相切.
理由:
如图所示,连接OE.
∵EF=BF,∴∠B=∠BEF.
∵OA=OE,∴∠A=∠AEO.
∵∠ACB=90°,∴∠A+∠B=90°.
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,∴OE⊥EF,
∴直线EF与⊙O相切.
(2)如图所示,连接ED.
∵AD是⊙O的直径,∴∠AED=90°.
∵∠A=30°,∴∠ADE=60°.
又∵OE=OD,∴△ODE是等边三角形.
∴∠DOE=60°.
由
(1)知∠OEG=90°,
∴∠OGE=30°.
在Rt△OEG中,OG=2OE=2OA=4,
∴EG=
=2
,
∴S△OEG=
OE·EG=
×2×2
=2
,S扇形OED=
×π×22=
π,
∴S阴影=S△OEG-S扇形OED=2
-
π.
14.解:
(1)证明:
如图,连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE.
∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∠ADB=∠ACB+∠CAD,
∴∠ABC=∠CAD.
∵AE为⊙O的直径,
∴∠ADE=90°,
∴∠EAD=90°-∠AED.
∵∠AED=∠ABD,
∴∠AED=∠ABC=∠CAD,
∴∠EAD=90°-∠CAD,
即∠EAD+∠CAD=90°,
∴EA⊥AC,
∴AC是⊙O的切线.
(2)∵BD是⊙O的直径,
∴∠BAD=90°,
∴∠ABC+∠ADB=90°.
∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,
∴4∠ABC=90°,
∴∠ABC=22.5°,
由
(1)知∠ABC=∠CAD,
∴∠CAD=22.5°.
15.解:
(1)证明:
如图,连接EF.
∵AE平分∠BAC,∴∠FAE=∠EAC.
∵EF=AF,∴∠FAE=∠FEA,
∴∠EAC=∠FEA,∴EF∥AC,
∴∠BEF=∠C.
∵AB是Rt△ABC的斜边,∴∠C=90°,
∴∠BEF=90°,即EF⊥BC.
又∵EF是⊙F的半径,∴BC是⊙F的切线.
(2)如图,连接DF.
∵A(0,-1),D(2,0),
∴OA=1,OD=2.
设⊙F的半径是r,则FD=r,OF=r-1.
∵OD⊥OF,
∴OF2+OD2=FD2,
即(r-1)2+22=r2,解得r=2.5,
∴⊙F的半径是2.5.
(3)2CD+AD=AG.
证明:
如图,过点F作FH⊥AC于点H.
∵F是圆心,FH⊥AC,
∴AH=DH=
AD,∠FHD=90°.
∵∠BEF=∠C=90°,∴∠CEF=90°,
∴四边形CEFH是矩形,∴CH=EF.
∵AG是⊙F的直径,∴EF=
AG,
∴CH=
AG.
∵AD+CD=AC=AH+CH,
∴AD+CD=
AD+
AG,
∴2CD+AD=AG.