63道经典物理题.docx

上传人:b****8 文档编号:9583135 上传时间:2023-02-05 格式:DOCX 页数:33 大小:523.40KB
下载 相关 举报
63道经典物理题.docx_第1页
第1页 / 共33页
63道经典物理题.docx_第2页
第2页 / 共33页
63道经典物理题.docx_第3页
第3页 / 共33页
63道经典物理题.docx_第4页
第4页 / 共33页
63道经典物理题.docx_第5页
第5页 / 共33页
点击查看更多>>
下载资源
资源描述

63道经典物理题.docx

《63道经典物理题.docx》由会员分享,可在线阅读,更多相关《63道经典物理题.docx(33页珍藏版)》请在冰豆网上搜索。

63道经典物理题.docx

63道经典物理题

63道经典物理题

1、如图所示,PR是一块长为L=4m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1kg,带电量为q=0.5C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。

当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2,求:

(1)判断物体带电性质,正电荷还是负电荷?

(2)物体与挡板碰撞前后的速度v1和v2

(3)磁感应强度B的大小(4)电场强度E的大小和方向

 

2、如图所示,光滑水平桌面上有长L=2m的木板C,质量mc=5kg,在其正中央并排放着两个小滑块A和B,mA=1kg,mB=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:

(1)当两滑块A、B都与挡板碰撞后,C的速度是多大?

(2)到A、B都与挡板碰撞为止,C的位移为多少?

 

3、为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F

,放手后,木板沿斜面下滑,稳定后弹簧示数为F

,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?

(斜面体固定在地面上)

 

4有一倾角为θ的斜面,其底端固定一挡板M,另有三个木块A、B和C,它们的质量分别为m

=m

=m,m

=3m,它们与斜面间的动摩擦因数都相同.其中木块A连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M相连,如图所示.开始时,木块A静止在P处,弹簧处于自然伸长状态.木块B在Q点以初速度v

向下运动,P、Q间的距离为L.已知木块B在下滑过程中做匀速直线运动,与木块A相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B向上运动恰好能回到Q点.若木块A静止于P点,木块C从Q点开始以初速度

向下运动,经历同样过程,最后木块C停在斜面上的R点,求:

(1)A、B和A、C碰后一起压缩弹簧,弹簧的最大弹性势能

(2)P、R间的距离L′的大小。

 

9、如下图所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B.边长为l的正方形金属框abcd(下简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U型金属框架MNPQ(仅有MN、NQ、QP三条边,下简称U型框),U型框与方框之间接触良好且无摩擦.两个金属框每条边的质量均为m,每条边的电阻均为r.  

 

(1)将方框固定不动,用力拉动U型框使它以速度

垂直NQ边向右匀速运动,当U型框的MP端滑至方框的最右侧(如图乙所示)时,方框上的bd两端的电势差为多大?

此时方框的热功率为多大?

(2)若方框不固定,给U型框垂直NQ边向右的初速度

,如果U型框恰好不能与方框分离,则在这一过程中两框架上产生的总热量为多少?

(3)若方框不固定,给U型框垂直NQ边向右的初速度v(

),U型框最终将与方框分离.如果从U型框和方框不再接触开始,经过时间t后方框的最右侧和U型框的最左侧之间的距离为s.求两金属框分离后的速度各多大.

 

10、长为0.51m的木板A,质量为1kg.板上右端有物块B,质量为3kg.它们一起在光滑的水平面上向左匀速运动.速度v0=2m/s.木板与等高的竖直固定板C发生碰撞,时间极短,没有机械能的损失.物块与木板间的动摩擦因数μ=0.5.g取10m/s2.求:

(1)第一次碰撞后,A、B共同运动的速度大小和方向.

(2)第一次碰撞后,A与C之间的最大距离.(结果保留两位小数)

(3)A与固定板碰撞几次,B可脱离A板.

 

11、如图10是为了检验某种防护罩承受冲击能力的装置,M为半径为

、固定于竖直平面内的

光滑圆弧轨道,轨道上端切线水平,N为待检验的固定曲面,该曲面在竖直面内的截面为半径

圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点,M的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量

的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到N的某一点上,取

,求:

(1)发射该钢珠前,弹簧的弹性势能

多大?

(2)钢珠落到圆弧

上时的速度大小

是多少?

(结果保留两位有效数字)

 

12建筑工地上的黄沙堆成圆锥形,而且不管如何堆其角度是不变的。

若测出其圆锥底的周长为12.5m,

高为1.5m,如图所示。

(1)试求黄沙之间的动摩擦因数。

(2)若将该黄沙靠墙堆放,占用的场地面积至少为多少?

 

13如图所示,光滑水平地面上停着一辆平板车,其质量为2m,长为L,车右端(A点)有一块静止的质量为m的小金属块.金属块与车间有摩擦,与中点C为界,AC段与CB段摩擦因数不同.现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C时,即撤去这个力.已知撤去力的瞬间,金属块的速度为v0,车的速度为2v0,最后金属块恰停在车的左端(B点)。

如果金属块与车的AC段间的动摩擦因数为

,与CB段间的动摩擦因数为

,求

的比值.

 

14如图所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为E、方向水平向右,其宽度为L;中间区域匀强磁场的磁感应强度大小为B、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B、方向垂直纸面向里。

一个带正电的粒子(质量m,电量q,不计重力)从电场左边缘a点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a点,然后重复上述运动过程。

(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。

(1)中间磁场区域的宽度d为多大;

(2)带电粒子在两个磁场区域中的运动时间之比;

(3)带电粒子从a点开始运动到第一次回到a点时所用的时间t.

 

 

15.)如图10所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e,盒子中存在着

沿ad方向的匀强电场,场强大小为E。

一粒子源不断地从a处的小孔沿ab方向向盒内发

射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好从e处的小孔射出。

现撤去电

场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子

仍恰好从e孔射出。

(带电粒子的重力和粒子之间的相互作用力均可忽略)

(1)所加磁场的方向如何?

(2)电场强度E与磁感应强度B的比值为多大?

 

16.如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,

(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值.

(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.

 

17如图所示,为某一装置的俯视图,PQ、MN为竖直放置的很长的平行金属板,两板间有匀强磁场,其大小为B,方向竖直向下.金属棒AB搁置在两板上缘,并与两板垂直良好接触.现有质量为m,带电量大小为q,其重力不计的粒子,以初速v0水平射入两板间,问:

(1)金属棒AB应朝什么方向,以多大速度运动,可以使带电粒子做匀速运动?

(2)若金属棒的运动突然停止,带电粒子在磁场中继续运动,从这刻开始位移第一次达到mv0/qB时的时间间隔是多少?

(磁场足够大)

 

18如图所示,气缸放置在水平平台上,活塞质量为10kg,横截面积50cm2,厚度1cm,气缸全长21cm,气缸质量20kg,大气压强为1×105Pa,当温度为7℃时,活塞封闭的气柱长10cm,若将气缸倒过来放置时,活塞下方的空气能通过平台上的缺口与大气相通。

g取10m/s2求:

(1)气柱多长?

(2)当温度多高时,活塞刚好接触平台?

(3)当温度多高时,缸筒刚好对地面无压力。

(活塞摩擦不计)。

 

 

19如图所示,物块A的质量为M,物块B、C的质量都是m,并都可看作质点,且m<M<2m。

三物块用细线通过滑轮连接,物块B与物块C的距离和物块C到地面的距离都是L。

现将物块A下方的细线剪断,若物块A距滑轮足够远且不计一切阻力。

求:

(1)物块A上升时的最大速度;

(2)物块A上升的最大高度。

 

20.M是气压式打包机的一个气缸,在图示状态时,缸内压强为Pl,容积为Vo.N是一个大活塞,横截面积为S2,左边连接有推板,推住一个包裹.缸的右边有一个小活塞,横截面积为S1,它的连接杆在B处与推杆AO以铰链连接,O为固定转动轴,B、O间距离为d.推杆推动一次,转过θ角(θ为一很小角),小活塞移动的距离为dθ,则

(1)在图示状态,包已被压紧,此时再推—次杆之后,包受到的压力为多大?

(此过程中大活塞的位移略去不计,温度变化不计)

(2)上述推杆终止时,手的推力为多大?

(杆长AO=L,大气压为Po)

 

.21.(12分)如图,在竖直面内有两平行金属导轨AB、CD。

导轨间距为L,电阻不计。

一根电阻不计的金属棒ab可在导轨上无摩擦地滑动。

棒与导轨垂直,并接触良好。

导轨之间有垂直纸面向外的匀强磁场,磁感强度为B。

导轨右边与电路连接。

电路中的三个定值电阻阻值分别为2R、R和R。

在BD间接有一水平放置的平行板电容器C,板间距离为d。

(1)当ab以速度v0匀速向左运动时,电容器中质量为m的带电微粒恰好静止。

试判断微粒的带电性质,及带电量的大小。

(2)ab棒由静止开始,以恒定的加速度a向左运动。

讨论电容器中带电微粒的加速度如何变化。

(设带电微粒始终未与极板接触。

 

22如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。

在x轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场。

在第四象限,存在沿y轴负方向,场强大小与第三象限电场场强相等的匀强电场。

一质量为m、电量为q的带电质点,从y轴上y=h处的p

点以一定的水平初速度沿x轴负方向进入第二象限。

然后经过x轴上x=-2h处的p

点进入第三象限,带电质点恰好能做匀速圆周运动。

之后经过y轴上y=-2h处的p

点进入第四象限。

已知重力加速度为g。

求:

(1)粒子到达p

点时速度的大小和方向;

(2)第三象限空间中电场强度和磁感应强度的大小;

(3)带电质点在第四象限空间运动过程中最小速度的大小和方向。

 

23、如图所示,在非常高的光滑、绝缘水平高台边缘,静置一个不带电的小金属块B,另有一与B完全相同的带电量为+q的小金属块A以初速度v0向B运动,A、B的质量均为m。

A与B相碰撞后,两物块立即粘在一起,并从台上飞出。

已知在高台边缘的右面空间中存在水平向左的匀强电场,场强大小E=2mg/q。

求:

1)A、B一起运动过程中距高台边缘的最大水平距离

(2)A、B运动过程的最小速度为多大

(3)从开始到A、B运动到距高台边缘最大水平距离的过程A损失的机械能为多大?

 

24如图所示,在真空区域内,有宽度为L的匀强磁场,磁感应强度为B,磁场方向垂直纸面向里,MN、PQ是磁场的边界。

质量为m,带电量为-q的粒子,先后两次沿着与MN夹角为θ(0<θ<90º)的方向垂直磁感线射入匀强磁场B中,第一次,粒子是经电压U1加速后射入磁场,粒子刚好没能从PQ边界射出磁场。

第二次粒子是经电压U2加速后射入磁场,粒子则刚好垂直PQ射出磁场。

不计重力的影响,粒子加速前速度认为是零,求:

(1)为使粒子经电压U2加速射入磁场后沿直线运动,直至射出PQ边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向。

(2)加速电压

的值。

 

25空间存在着以x=0平面为分界面的两个匀强磁场,左右两边磁场的磁感应强度分别为B1和B2,

且B1:

B2=4:

3,方向如图所示。

现在原点O处一静止的中性原子,突然分裂成两个带电粒子a和b,

已知a带正电荷,分裂时初速度方向为沿x轴正方向,若a粒子在第四次经过y轴时,

恰好与b粒子第一次相遇。

求:

(1)a粒子在磁场B1中作圆周运动的半径与b粒子在磁场B2中圆周运动的半径之比。

(2)a粒子和b粒子的质量之比。

 

26如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直轨道与圆弧轨道相切于C点,其中圆心O与BE在同一水平面上,OD竖直,∠COD=θ,且θ<5°。

现有一质量为m的小物体(可以看作质点)从斜面上的A点静止滑下,小物体与BC间的动摩擦因数为

,现要使小物体第一次滑入圆弧轨道即恰好做简谐运动(重力加速度为g)。

求:

(1)小物体过D点时对轨道的压力大小

(2)直轨道AB部分的长度S

 

27两水平放置的金属板间存在一竖直方向的匀强电场和垂直纸面向里的匀强磁场,磁感应强度为B,一质量为4m,带电量为-2q的微粒b正好悬浮在板间正中间O点处,另一质量为m,带电量为+q的微粒a,从p点以水平速度v0(v0未知)进入两板间,正好做匀速直线运动,中途与b碰撞。

匀强电场的电场强度E为多大微粒a的水平速度为多大若碰撞后a和b结为一整体,最后以速度0.4v0从Q点穿出场区,求Q点与O点的高度差

若碰撞后a和b分开,分开后b具有大小为0.3v0的水平向右速度,且带电量为-q/2,假如O点的左侧空间足够大,则分开后微粒a的运动轨迹的最高点与O点的高度差为多大

 

29一玩具“火箭”由质量为ml和m2的两部分和压在中间的一根短而硬(即劲度系数很大)的轻质弹簧组成.起初,弹簧被压紧后锁定,具有的弹性势能为E0,通过遥控器可在瞬间对弹簧解除锁定,使弹簧迅速恢复原长。

现使该“火箭”位于一个深水池面的上方(可认为贴近水面),释放同时解除锁定。

于是,“火箭”的上部分竖直升空,下部分竖直钻入水中。

设火箭本身的长度与它所能上升的高度及钻入水中的深度相比,可以忽略,但体积不可忽略。

试求.

(1)“火箭”上部分所能达到的最大高度(相对于水面)

(2)若上部分到达最高点时,下部分刚好触及水池底部,那么,此过程中,“火箭”下部分克服水的浮力做了多少功?

(不计水的粘滞阻力)

 

30如图所示,在某一足够大的真空室中,虚线PH的右侧是一磁感应强度为B,方向垂直纸面向里的匀强磁场,左侧是一场强为E、方向水平向左的匀强电场。

在虚线PH上的一点O处有一质量为M、电荷量为Q的镭核(

Ra)。

某时刻原来静止的镭核水平向右放出一个质量为m、电荷量为q的α粒子而衰变为氡(Rn)核,设α粒子与氡核分离后它们之间的作用力忽略不计,涉及动量问题时,亏损的质量可不计。

经过一段时间α粒子刚好到达虚线PH上的A点,测得OA=L。

求此时刻氡核的速率

 

31宇航员在某一星球上以速度v0竖直向上抛出一个小球,经过时间t,小球又落回原抛出点。

然后他用一根长为L的细线把一个质量为m的小球悬挂在O点,使小球处于静止状态,如图所示。

现在最低点给小球一个水平向右的冲量I,使小球能在竖直平面内运动,若小球在运动的过程始终对细绳有力的作用,则冲量I应满足什么条件

 

32如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d=40cm。

电源电动势E=24V,内电阻r=1Ω,电阻R=15Ω。

闭合开关S,待电路稳定后,将一带正电的小球从B板小孔以初速度υ0=4m/s竖直向上射入板间。

若小球带电量为q=1×10-2C,质量为m=2×10-2kg,不考虑空气阻力。

那么,滑动变阻器接入电路的阻值为多大时,小球恰能到达A板?

此时,电源的输出功率是多大?

(取g=10m/s2)

 

33如图所示,光滑的水平面上有二块相同的长木板A和B,长为

=0.5m,在B的右端有一个可以看作质点的小铁块C,三者的质量都为m,C与A、B间的动摩擦因数都为μ。

现在A以速度ν0=6m/s向右运动并与B相碰,撞击时间极短,碰后A、B粘在一起运动,而C可以在A、B上滑动,问:

(1)如果μ=0.5,则C会不会掉下地面

(2)要使C最后停在长木板A上,则动摩擦因数μ必须满足什么条件

(g=10m/s2)

 

34如图所示,质量M=3.5kg的小车静止于光滑水平面上靠近桌子处,其上表面与水平桌面相平,小车长L=1.2m,其左端放有一质量为m2=0.5kg的滑块Q。

水平放置的轻弹簧左端固定,质量为m1=1kg的小物块P置于桌面上的A点并与弹簧的右端接触。

此时弹簧处于原长,现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内)时,推力做的功为WF,撤去推力后,P沿桌面滑动到达C点时的速度为2m/s,并与小车上的Q相碰,最后Q停在小车的右端,P停在距小车左端S=0.5m处。

已知AB间距L1=5cm,A点离桌子边沿C点距离L2=90cm,P与桌面间动摩擦因数μ1=0.4,P、Q与小车表面间动摩擦因数μ2=0.1。

(g=10m/s。

)求:

(1)推力做的功WF

(2)P与Q碰撞后瞬间Q的速度大小和小车最后速度v

 

35如图所示,半径R=0.8m的光滑1/4圆弧轨道固定在光滑水平上,轨道上方的A点有一个可视为质点的质量m=1kg的小物块。

小物块由静止开始下落后打在圆弧轨道上的B点但未反弹,在该瞬间碰撞过程中,小物块沿半径方向的分速度即刻减为零,而沿切线方向的分速度不变,此后小物块将沿着圆弧轨道滑下。

已知A点与轨道的圆心O的连线长也为R,且AO连线与水平方向的夹角为30°,C点为圆弧轨道的末端,紧靠C点有一质量M=3kg的长木板,木板的上表面与圆弧轨道末端的切线相平,小物块与木板间的动摩擦因数

,g取10m/s2。

求:

(1)小物块刚到达B点时的速度

(2)小物块沿圆弧轨道到达C点时对轨道压力FC的大小;

(3)木板长度L至少为多大时小物块才不会滑出长木板?

 

36磁悬浮列车动力原理如下图所示,在水平地面上放有两根平行直导轨,轨间存在着等距离的正方形匀强磁场Bl和B2,方向相反,B1=B2=lT,如下图所示。

导轨上放有金属框abcd,金属框电阻R=2Ω,导轨间距L=0.4m,当磁场Bl、B2同时以v=5m/s的速度向右匀速运动时,求

(1)如果导轨和金属框均很光滑,金属框对地是否运动?

若不运动,请说明理由;如运动,原因是什么?

运动性质如何?

(2)如果金属框运动中所受到的阻力恒为其对地速度的K倍,K=0.18,求金属框所能达到的最大速度vm是多少?

(3)如果金属框要维持

(2)中最大速度运动,它每秒钟要消耗多少磁场能?

 

37如图左所示,边长为l和L的矩形线框

互相垂直,彼此绝缘,可绕中心轴O1O2转动,将两线框的始端并在一起接到滑环C,末端并在一起接到滑环D,C、D彼此绝缘.通过电刷跟C、D连接.线框处于磁铁和圆柱形铁芯之间的磁场中,磁场边缘中心的张角为45°,如图右所示(图中的圆表示圆柱形铁芯,它使磁铁和铁芯之间的磁场沿半径方向,如图箭头所示).不论线框转到磁场中的什么位置,磁场的方向总是沿着线框平面.磁场中长为l的线框边所在处的磁感应强度大小恒为B,设线框

的电阻都是r,两个线框以角速度ω逆时针匀速转动,电阻R=2r.

(1)求线框

转到图右位置时感应电动势的大小;

(2)求转动过程中电阻R上的电压最大值;

(3)从线框

进入磁场开始时,作出0~T(T是线框转动周期)时间内通过R的电流iR随时间变化的图象;

(4)求外力驱动两线框转动一周所做的功。

 

38如图所示,质量为M的长板静置在光滑的水平面上,左侧固定一劲度系数为k且足够长的水平轻质弹簧,右侧用一根不可伸长的细绳连接于墙上(细绳张紧),细绳所能承受的最大拉力为T.让一质量为m、初速为v0的小滑块在长板上无摩擦地对准弹簧水平向左运动.已知弹簧的弹性势能表达式为EP=

其中

为弹簧的形变量.试问:

(l)v0的大小满足什么条件时细绳会被拉断?

(2)若v0足够大,且v0已知.在细绳被拉断后,长板所能获得的最大加速度多大?

(3)滑块最后离开长板时,相对地面速度恰为零的条件是什么?

 

39如图所示,匀强电场区域和匀强磁场区域是紧邻的,且宽度相等均为d,电场方向在纸平面内,而磁场方向垂直纸面向里.一带正电粒子从O点以速度v0沿垂直电场方向进入电场,在电场力的作用下发生偏转,从A点离开电场进入磁场,离开电场时带电粒子在电场方向的位移为电场宽度的一半,当粒子从C点穿出磁场时速度方向与进入电场O点时的速度方向一致,(带电粒子重力不计)求:

(l)粒子从C点穿出磁场时的速度v;

(2)电场强度E和磁感应强度B的比值E/B;

(3)拉子在电、磁场中运动的总时间。

40

如图所示,在xoy坐标平面的第一象限内有沿-y方向的匀强电场,在第四象限内有垂直于平面向外的匀强磁场。

现有一质量为m,带电量为+q的粒子(重力不计)以初速度v0沿-x方向从坐标为(3l、l)的P点开始运动,接着进入磁场,最后由坐标原点射出,射出时速度方向与y轴方间夹角为45º,求:

(1)粒子从O点射出时的速度v和电场强度E;

(2)粒子从P点运动到O点过程所用的时间。

 

41如图所示,在光滑的水平面上固定有左、右两竖直挡板,挡板间距离足够长,有一质量为M,长为L的长木板靠在左侧挡板处,另有一质量为m的小物块(可视为质点),放置在长木板的左端,已知小物块与长木板间的动摩擦因数为μ,且M>m。

现使小物块和长木板以共同速度v0向有运动,设长木板与左、右挡板的碰撞中无机械能损失。

试求:

(1)将要发生第二次碰撞时,若小物块仍未从长木板上落下,则它应距长木板左端多远?

(2)为使小物块不从长木板上落下,板长L应满足什么条件?

(3)若满足

(2)中条件,且M=2kg,m=1kg,v0=10m/s,试计算整个

系统从开始到刚要发生第四次碰撞前损失的机械能。

 

42

如图1所示,真空中相距

的两块平行金属板A、B与电源连接(图中未画出),其中B板接地(电势为零),A板电势变化的规律如图2所示将一个质量

,电量

的带电粒子从紧临B板处释放,不计重力。

(1)在

时刻释放该带电粒子,释放瞬间粒子加速度的大小;

(2)若A板电势变化周期

s,在

时将带电粒子从紧临B板处无初速释放,粒子到达A板时动量的大小;

(3)A板电势变化频率多大时,在

时间内从紧临B板处无初速释放该带电粒子,粒子不能到达A板。

 

44如图所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=1.57T。

小球1带正电,其电量与质量之比q1/m1=4C/kg,所受重力与电场力的大小相等;小球2不带电,静止放置于固定的水平悬空支架上。

小球1向右以υ0=23.59m/s的水平速度与小球2正碰,碰后经过0.75s再次相碰。

设碰撞前后两小球带电情况不发生改变,且始终保持在同一竖直平面内。

(取g=10m/s2)

问:

(1)电场强度E的大小是多少?

(2)两小球的质量之比

是多少

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1