数控直流稳压电源设计.docx

上传人:b****8 文档编号:9528533 上传时间:2023-02-05 格式:DOCX 页数:12 大小:181.90KB
下载 相关 举报
数控直流稳压电源设计.docx_第1页
第1页 / 共12页
数控直流稳压电源设计.docx_第2页
第2页 / 共12页
数控直流稳压电源设计.docx_第3页
第3页 / 共12页
数控直流稳压电源设计.docx_第4页
第4页 / 共12页
数控直流稳压电源设计.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

数控直流稳压电源设计.docx

《数控直流稳压电源设计.docx》由会员分享,可在线阅读,更多相关《数控直流稳压电源设计.docx(12页珍藏版)》请在冰豆网上搜索。

数控直流稳压电源设计.docx

数控直流稳压电源设计

数控直流稳压电源设计论文

绪    论

 

电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。

电力电子技术是电能的最佳应用技术之一。

当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。

随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。

随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。

电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。

只有满足产品标准,才能够进入市场。

随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。

数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。

这些理论为其后来的发展提供了一个良好的基础。

在以后的一段时间里,数控电源技术有了长足的发展。

但其产品存在数控程度达不到要求、分辨率不高、功率密度比较低、可靠性较差的缺点。

因此数控电源主要的发展方向,是针对上述缺点不断加以改善。

单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。

新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V的数控电源,功率密度达到每立方英寸50W的数控电源。

从组成上,数控电源可分成器件、主电路与控制等三部分。

目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦

数字化智能电源模块是针对传统智能电源模块的不足提出的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。

电源采用数字控制,具有以下明显优点:

1)易于采用先进的控制方法和智能控制策略,使电源模块的智能化程度更高,性能更完美。

2)控制灵活,系统升级方便,甚至可以在线修改控制算法,而不必改动硬件线路。

3)控制系统的可靠性提高,易于标准化,可以针对不同的系统(或不同型号的产品),采用统一的控制板,而只是对控制软件做一些调整即可。

4)系统维护方便,一旦出现故障,可以很方便地通过RS232接口或RS485接口或USB接口进行调试,故障查询,历史记录查询,故障诊断,软件修复,甚至控制参数的在线修改、调试;也可以通过MODEM远程操作。

5)系统的一致性好,成本低,生产制造方便。

由于控制软件不像模拟器件那样存在差异,所以,其一致性很好。

由于采用软件控制,控制板的体积将大大减小,生产成本下降。

6)易组成高可靠性的多模块逆变电源并联运行系统。

为了得到高性能的并联运行逆变电源系统,每个并联运行的逆变电源单元模块都采用全数字化控制,易于在模块之间更好地进行均流控制和通讯或者在模块中实现复杂的均流控制算法(不需要通讯),从而实现高可靠性、高冗余度的逆变电源并联运行系统。

引言

  目前所使用的直流可调电源中,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。

利用数控电源,可以达到每步0.1V的精度,输出电压范围0~15V,电流可以达到2A。

  系统结构

图1:

硬件系统结构图

  对选用芯片说明

  DAC0832是一款常用的数摸转换器,它有两种连接模式,一种是电压输出模式,另外一种是电流输出模式,为了设计的方便,选用电压输出模式,如电路图所示,Iout1和Iout2之间接一参考电压,VREF输出可控制电压信号。

它有三种工作方式:

不带缓冲工作方式,单缓冲工作方式,双缓冲工作方式。

该电路采用单缓冲模式,由电路图可知,由于/WR2=/XFER=0,DAC寄存处于直通状态。

又由于ILE=1,故只要在选中该片(/CS=0)的地址时,写入(/WR=0)数字量,则该数字信号立即传送到输入寄存器,并直通至DAC寄存器,经过短暂的建立时间,即可以获得相应的模拟电压,一旦写入操作结束,/WR1和/CS立即变为高电平,则写入的数据被输入寄存器锁存,直到再次写入刷新。

  AT24C02是一款常用的可掉电保存数据的ROM,2K比特容量,采用I2C总线操作,关于它的具体操作方法参考相关资料。

图2:

主硬件电路图

图3:

参考电压电路图

  硬件电路设计

  采用常用的51芯片作为控制器,P0口和DAC0832的数据口直接相连,DA的/CS和/WR1连接后接P2.0,/WR2和/XEFR接地,让DA工作在单缓冲方式下。

DA的11脚接参考电压,参考电压电路如图2所示,通过调节可调电阻调节LM336的输出电压为5.12V,所以在DAC的8脚输出电压的分辨率为5.12V/256=0.02V,也就是说DA输入数据端每增加1,电压增加0.02V。

  DA的电压输出端接放大器OP07的输入端,放大器的放大倍数为R8/(R8+R9)=1K/(1K+4K)=5,输出到电压模块LM350的电压分辨率=0.02V×5=0.1V。

所以,当MCU输出数据增加1的时候,最终输出电压增加0.1V,当调节电压的时候,可以以每次0.1V的梯度增加或者降低电压。

  本电路设计三个按键,KEY1为翻页按键,最近设置的电压大小保存在EEROM里面,比如10个电压,按一下KEY1,电压变为下一个,省去了反复设置电压的麻烦,KEY2为电压+,KEY3为电压+,按一下KEY2,当前电压增加0.1V,按一下KEY3,当前电压减小0.1V。

  限于篇幅原因,未画出数码管显示电路,该系统使用3个数码管,可以显示三位数,一个小数位,比如可以显示12.5V,采用动态扫描驱动方式。

本主电路的原理是通过MCU控制DA的输出电压大小,通过放大器放大,给电压模块作为最终输出的参考电压,真正的电压,电流还是由电压模块LM350输出。

  为了达到2A的输出电流,LM350必须选用金属外壳封装,并且带稍大面积的散热片。

  软件流程

  软件系统

  软件的设计主要完成三方面的功能:

  1.设置电压并且保存,主要是对EEROM的操作。

  2.把设置的电压送到DA,主要是对DA的操作。

  3.中断显示,把设置的电压显示到LED数码管上。

  该数控电压源实现保存最近10电压功能,当打开电源的时候,它显示和输出的必须是上次使用电压大小,所以在EEROM中使用11个地址保存数据,第一个地址保存当前电压编号,大小为1~10。

第2个地址~第11个地址连续保存10个电压大小数据。

电压编号的大小分别对应到相应地址电压大小。

  对软件流程做一下说明:

当电源打开的时候,MCU进行复位,寄存器清零。

接着电源应该显示和输出上次关机前的电压大小,这时候MCU先读取EEPROM中保存的电压编号,根据电压编号读出对应电压,把该数据送到DA,在转换成BCD码送到显示部分。

这时候程序循环检测是否有按键信号,如果KEY1按下,电压编号指向下一个,保存该电压编号,读对应电压,把他送到DA并且显示。

如果KEY2按下,当前电压数据加1,相对应输出电压(POWER—OUT引脚)增加0.1V,保存设置电压数据。

如果KEY3按下,电压数据减1,输出电压

减少0.1V,保存设置电压数据。

  结语

  该数控电压源经过时间实际使用说明,具有精度高,使用方便,硬件电路简单等特点。

如果要作成产品,还需要增加电流测量和显示部分,对这部分电路请参考相关资料。

本文主要对如何控制功率输出电压大小做出个例子,该电路对测量领域,以及马达调速方面都可以扩展使用。

根据设计要求,采用数模结合,智能控制方案完成数字式高压直流稳压电源的设计。

系统可分为数字和模拟两部分,数字部分发挥单片机智能控制功能,并结合显示模块、按键控制模块、APD转换模块、DPA转换模块,使其完成对系统的智能控制,达到能自动控制电源输出电压的大小,实时测量电压并显示。

模拟部分包括波形产生电路,倍压整流电路,取样电路,控制电路及外围元件组成。

系统控制采用单片机完成,单片机结合软件编程完成LED显示、DPA转换、APD转换、键盘控制、实时电压测量等。

单片机采用Atmal公司的AT89C52芯片,软件编程应用汇编语言。

方案的原理与系统框图如图1所示。

电路由两个PNP型三极管构成推挽型开关电路,波形发生电路产生两个幅度相等、相位相反的方波,分别加在两个开关管的基极,使得两个三极管轮流导通。

当开关管导通的瞬间在Q、C、T组成的回路中产生一个很大的电流,根据楞次定律,由于电感两端电流不能突变,使变压器次极产生感应电压,这样初级的能量通过变压器传送到了次极,由于变压器是升压型,这样次极电压高于初级,经倍压整流达到设计所要求的电压。

取样电路和键盘输入数据通过单片机处理后,经DPA转换调节电压控制电路,使变压器初级电压大小发生变化,从而使得输出电压也相应的发生变化,达到所需要的电压值。

1.1 振荡电路

振荡电路的原理图如图2所示,电路采用555定时器接成的多谐振荡器来产生所需一定大小的方波信号。

从图中可以看到:

R2、R3、C2是振荡电路的定时元件,调节它们可以得到不同的振荡频率;C1的作用是防止干扰电压对电路的影响

1.2 隔离与驱动电路的设计

由于高压电源电路开关管与升压变压器工作于振荡状态,因此电路中会产生大量的高频高次谐波,为了防止这些有害的干扰影响振荡电路和单片机的工作,必须采用严格的隔离和滤波。

隔离的方式有许多种,其中效果较为明显的主要有两种,一种是变压器隔离,一种是光电隔离。

结合本系统,前者的优点是可以作为开关管的前级推动变压器,使开关管获得足够的推动功率,从而可以减小开关管的损耗,但是,由于其体积较大,市场上很难买到符合要求的变压器,相比之下,后者体积小,价格便宜,因而得到了广泛的应用。

本系统采用光电隔离技术,试验证明,光耦隔离可以有效的防止干扰脉冲影响振荡电路的工作。

电路采用电压比较器作为驱动电路,它能产生一组幅度相等、相位相反的脉冲信号,分别加到两个开关管基极,很好的满足电路的要求。

这种方式具有电路简单、驱动功率大、输出波形好的特点,从而避免了采用体积较大而笨重且绕制繁琐的变压器驱动。

隔离与驱动电路原理图如图3所示

在图2中,在振荡器与开关管之间接入一光耦元件TLP601,它能有效的隔离高频干扰脉冲,保证振荡电路能正常工作。

光耦随着三极管的导通而发光,从而使旁边的光敏三级管导通。

电阻R33与R77分压,使得A点电位为2V左右,当Q1导通时,U3的③脚与U4的②脚电位几乎与电源电压VCC相等,因此,U3⑦脚输出为零电平,U4⑦脚输出为高电平,并且现两者的输出幅度相等。

R66和R88是上拉电阻,它能有效的改善电压比较器的输出波形。

1.3 开关升压电路的设计

主要考虑的有两点,一是开关频率,二是开关管参数的选择。

开关管选择的恰当与否直接影响到整个电路的工作。

开关管的选择与最大容许集电极电流Icm、集电极最大耗散功率Pcm、三极管的最大反向耐压有关。

变换器振荡频率f,一般可在几千赫兹几十千赫兹范围内选择。

结合本电路,作为室内使用仪器的供电电源,综合考虑频率高低的优缺点,考虑到变压器的绕制上的困难(初次制作,经验不足),决定选用十千赫兹左右。

1.4 倍压整流电路的设计

倍压整流电路适用于输出直流高电压、小电流的小功率整流。

倍压整流有半波倍压整流和全波倍压整流。

根椐本电路的设计要求,采用了图4所示的电路。

它是由高压整流堆D1、D2、D3、D4及倍压电容C5、C6、C7、C8构成的四倍压整流电路。

1.5 控制电路的设计

图5为89C52单片机系统框图,单片机通过APD采样直流高压输出电压值,CPU对此值与预值电压比较,调整相应DPA转换,使实际输出电压与预值电压相同

2 软件设计

程序设计主要包括键盘处理程序模块、APD转换程序设计模块、DPA转换程序设计模块、误差处理程序设计模块、报警状态输出模块等等。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1