临床试验数据管理工作技术指南0729.docx

上传人:b****7 文档编号:9471878 上传时间:2023-02-04 格式:DOCX 页数:31 大小:40.10KB
下载 相关 举报
临床试验数据管理工作技术指南0729.docx_第1页
第1页 / 共31页
临床试验数据管理工作技术指南0729.docx_第2页
第2页 / 共31页
临床试验数据管理工作技术指南0729.docx_第3页
第3页 / 共31页
临床试验数据管理工作技术指南0729.docx_第4页
第4页 / 共31页
临床试验数据管理工作技术指南0729.docx_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

临床试验数据管理工作技术指南0729.docx

《临床试验数据管理工作技术指南0729.docx》由会员分享,可在线阅读,更多相关《临床试验数据管理工作技术指南0729.docx(31页珍藏版)》请在冰豆网上搜索。

临床试验数据管理工作技术指南0729.docx

临床试验数据管理工作技术指南0729

附件

一、概述

(一)国内临床试验数据管理现状

(二)国际临床试验数据管理简介

二、数据管理相关人员的责任、资质及培训

(一)相关人员的责任1.申办者2.研究者3.监查员4.数据管理员5.合同研究组织(CRO)

三、临床试验数据管理系统

(一)临床试验数据管理系统的重要性

(二)数据质量管理体系的建立和实施

(三)临床试验数据管理系统的基本要求

1.系统可靠性2.临床试验数据的可溯源性3.数据管理系统的权限管理

四、试验数据的标准化

(一)CDISC

(二)医学术语标准

1.MedDRA2.世界卫生组织药物词典3.WHOART术语集

五、数据管理工作的主要内容

(一)CRF的设计与填写

1.CRF的设计2.CRF填写指南3.注释CRF4.CRF的填写

(二)数据库的设计

(三)数据接收与录入

(四)数据核查

(五)数据质疑的管理

(六)数据更改的记录

(七)医学编码

(八)试验方案修改时的CRF变更

(九)实验室及其他外部数据

(十)数据盲态审核

(十一)数据库锁定

1.数据库锁定清单2.数据库锁定后发现数据错误

(十二)数据备份与恢复

(十三)数据保存

(十四)数据保密及受试者的个人隐私保护

1.数据保密2.受试者的个人隐私保护

六、数据质量的保障及评估

(一)质量保障

1.质量控制

(1)临床研究机构和质量控制

(2)监查和质量控制

(3)计算机系统的生命周期过程和质量控制

(4)数据管理过程和质量控制

2.质量保证

(1)标准操作规程(SOP)

(2)稽查(3)纠正和预防措施(CAPA)系统

(二)质量评估

七、安全性数据及严重不良事件报告

(一)不良事件的获取、管理和报告

(二)实验室数据(三)其他数据(四)严重不良事件数据

八、名词解释九、参考文献

 

临床试验数据管理工作技术指南

一、概述

临床试验数据质量是评价临床试验结果的基础。

为了确保临床试验结果的准确可靠、科学可信,国际社会和世界各国都纷纷出台了一系列的法规、规定和指导原则,用以规范临床试验数据管理的整个流程。

同时,现代新药临床试验的发展和科学技术的不断进步,特别是计算机、网络的发展又为临床试验及其数据管理的规范化提供了新的技术支持,也推动了各国政府和国际社会积极探索临床试验及数据管理新的规范化模式。

(一)国内临床试验数据管理现状

我国的《药物临床试验质量管理规范》(GoodClinicalPractice,GCP)对临床试验数据管理提出了一些原则要求,但关于具体的数据管理操作的法规和技术规定目前还处于空白。

由于缺乏配套的技术指导原则,我国在药物临床试验数据管理方面的规范化程度不高,临床试验数据管理质量良莠不齐,进而影响到新药有效性和安全性的客观科学评价。

此外,国内临床试验中电子化数据管理系统的开发和应用尚处于起步阶段,临床试验的数据管理模式大多基于纸质病例报告表(CaseReportForm,CRF)的数据采集阶段,电子化数据采集与数据管理系统应用有待推广和普及。

同时,由于缺乏国家数据标准,同类研究的数据库之间难以做到信息共享。

(二)国际临床试验数据管理简介

国际上,人用药品注册技术要求国际协调会议的药物临床研究质量管理规范(以下简称ICHE6GCP)对临床试验数据管理有着原则性要求。

对开展临床试验的研究者、研制厂商的职责以及有关试验过程的记录、源数据、数据核查等都直接或间接地提出了原则性的规定,以保证临床试验中获得的各类数据信息真实、准确、完整和可靠。

各国也颁布了相应的法规和指导原则,为临床试验数据管理的标准化和规范化提供具体的依据和指导。

如:

美国21号联邦法规第11部分(21CFRPart11)对临床试验数据的电子记录和电子签名的规定(1997年),使得电子记录、电子签名与传统的手写记录与手写签名具有同等的法律效力,从而使得美国食品药品管理局(FDA)能够接受电子化临床研究材料。

据此,美国FDA于2003年8月发布了相应的技术指导原则,对Part11的规定作了具体阐释,并在计算机系统的验证、稽查轨迹,以及文件记录的复制等方面提出明确的要求。

2007年5月,美国FDA颁布的《临床试验中使用的计算机化系统的指导原则》(GuidanceforIndustry:

ComputerizedSystemsUsedinClinicalInvestigations)为临床试验中计算机系统的开发和使用提供了基本的参照标准。

而且由国际上相关领域专家组成的临床试验数据管理学会(SocietyofClinicalDataManagement,SCDM)还形成了一部《良好的临床数据管理规范》(GoodClinicalDataManagementPractice,GCDMP),该文件为临床试验数据管理工作的每个关键环节都规定了相应操作的最低标准和最高规范,为临床试验中数据管理工作的实际操作提供了具体的技术指导。

综上,国际社会和发达国家均已建立了临床试验数据管理的若干法规、规定和技术指导原则,以保证试验数据的质量。

而我国这方面的起步较晚,发展缓慢,临床试验数据管理欠规范化,直接影响了我国新药研发与监管。

目前国家战略规划建设创新型社会的要求和重大新药创制专项计划对临床试验数据规范化管理提出了更加紧迫的需求。

鉴于其重要性和紧迫性,在积极总结和调研临床试验数据管理工作的当前技术水平和发展趋势的基础上,特制订本技术指南。

本指南从数据管理相关人员的职责、资质和培训,管理系统的要求,试验数据的标准化,数据管理工作的主要内容,数据质量的保障和评估,以及安全性数据及严重不良事件六个方面进行全面阐释,旨在对我国临床试验的数据管理工作起到规范化和指导性作用,适用于以注册为目的的药物临床试验,对上市后临床试验以及其他类型试验也同样具有指导意义。

二、数据管理相关人员的责任、资质及培训

临床试验数据管理工作要求临床试验研究项目团队共同努力、通力协作。

研究中与数据管理工作相关的人员涉及申办者、研究者、监查员、数据管理员和合同研究组织(ContractResearchOrganization,CRO)等。

(一)相关人员的责任

1.申办者

申办者是保证临床数据质量的最终责任人。

申办者应制定质量管理评价程序、质量管理计划与操作指南,并且应设立稽查部门,必要时申办者可自行进行稽查,由不直接涉及试验的人员定期对质量体系的依从性进行系统性检查。

此外,申办者还应保证数据的完整性,并对数据管理过程的合规性负有监督之责,包括外包时对CRO相应工作的合规性和数据质量进行监督。

申办者在数据管理工作方面的失责行为举例:

研究者未经培训而填写CRF;研究方案不明确或不合理。

2.研究者

研究者应确保以CRF或其他形式报告给申办者的数据准确、完整与及时,而且应保证CRF上的数据来自于受试者病历上的源数据,并必须对其中的任何不同给出解释。

研究者在数据管理工作方面的错误/不当行为举例:

违反研究方案,如错误的访视时间;源数据录入CRF时错误;实验室仪器人为测量误差;由不具备资质的人员填写CRF;研究者造假。

3.监查员

监查员应根据源文档核查CRF上的数据,一旦发现其中有错误或差异,应通知研究者,并根据所发现的错误或差异,记录相应的质疑,以确保所有数据的记录和报告正确和完整。

临床监查中常见问题举例:

无原始病历或原始病历中无记录(缺失或不全);CRF填写空缺、错误或不规范;不良事件的记录不完整;未向申办者报告有嫌疑的造假;检验结果不能溯源(实验室数据、心电图、X射线片等)。

4.数据管理员

数据管理员应按照研究方案的要求,参与设计CRF、建立数据库、对数据标准进行管理、并建立和测试逻辑检验程序。

在CRF接收后,录入人员要对CRF作录入前的检查;在CRF数据被录入数据库后,利用逻辑检验程序检查数据的有效性、一致性、缺失和正常值范围等。

数据管理员对发现的问题应及时清理,可通过向研究者发放数据质疑(Query)而得到解决。

数据管理员应参加临床研究者会议,为研究团队及时提出改善与提高数据质量的有效措施。

数据管理员的失责行为举例:

CRF表格设计不符合方案要求;逻辑检验程序错误;质疑的语言描述中有诱导的成分;按照质疑更新数据库时的错误。

5.合同研究组织(CRO)

ICHGCP指出申办者可以将与临床试验有关的工作和任务,部分或全部委托给一个CRO,但是,试验数据的质量和完整性的最终责任永远在申办者。

CRO应当实施质量保证和质量控制。

申办者首先应明确数据管理外包的范围,如果计划将数据管理工作外包,那么接下来就要选择合适的CRO,应对候选CRO的资质和能力等进行评价。

评价CRO时应主要考虑以下因素:

CRO的资质、以往业绩及合同履行能力;质量控制、质量保证的流程;数据管理系统的验证,以及设施条件;数据管理标准操作规程(StandardOperatingProcedure,SOP)以及遵守SOP的证明;员工资质、对SOP的掌握情况及其培训记录;文档修改控制过程的记录;文件保管系统。

一旦作出选择,申办者将与CRO签订有效合同,在合同中需明确双方的责、权、利。

试验申办者必要时应对CRO进行相关的培训,以保证其所提供的服务符合申办者质量标准要求。

在临床试验数据管理过程中,试验申办者需对CRO进行的活动进行及时有效的管理、沟通和核查,以确保其遵守共同商定的流程要求。

申办者的质量管理计划中必须包括CRO的质量管理信息,同时必须明确流程和期望结果。

(二)数据管理人员的资质及培训

负责临床试验数据管理的人员必须经过GCP、相关法律法规、相关SOP,以及数据管理的专业培训,以确保其具备工作要求的适当的资质。

数据管理专业培训应包括但不局限于:

数据管理部门SOP和部门政策;临床试验数据标准化文档及存档规则;数据管理系统及相关的计算机软件的应用与操作能力的培训;法规和行业标准:

GCP,CFDA法规和指导原则,以及ICH指导原则;保密性,隐私和数据安全性培训。

数据管理人员都必须保存完整的培训记录以备核查,培训记录需提供课程名称、培训师名称、课程的日期、完成状况、受训人员及其主管的签名。

如果是基于网络的培训,系统应提供培训证明,标明课程的名称、受训人员姓名,以及完成培训的时间。

数据管理人员还应该通过继续教育不断提升专业素质,以保障数据管理工作的高质量完成。

三、临床试验数据管理系统

(一)临床试验数据管理系统的重要性

数据管理的目的是确保数据的可靠、完整和准确。

数据管理过程包括采集/管理系统建立、CRF及数据库的设计、数据接收与录入、数据核查与质疑、医学编码、外部数据管理、盲态审核、数据库锁定、数据导出及传输、数据及数据管理文档的归档等。

数据管理的目标是获得高质量的真实数据。

因此,临床试验数据管理的各个阶段需要在一个完整、可靠的临床试验数据管理系统下运行,临床试验项目团队必须按照管理学的原理建立起一个体系,即数据管理系统,对可能影响数据质量结果的各种因素和环节进行全面控制和管理,使这些因素都处于受控状态,使临床研究数据始终保持在可控和可靠的水平。

此处的数据管理系统不是指狭义的计算机系统,而是一种广义的数据质量管理体系(QualityManagementSystem,QMS),它是临床试验项目管理系统的一个组成部分。

(二)数据质量管理体系的建立和实施

数据质量管理体系的建立是应用管理科学、提高管理水平、不断发展的过程。

建立和实施质量管理体系首先需确立质量方针和目标,以确定预期结果,帮助管理者利用其资源达到这些结果。

质量方针是管理者的质量宗旨和方向,质量目标是方针的具体化,是管理者在质量方面所追求的目的。

质量管理体系依托组织机构来协调和运行,必须建立一个与质量管理体系相适应的组织结构。

组织机构应明确规定数据管理相关人员的责任和权限。

质量管理体系的实施和运行是通过建立贯彻质量管理体系的文件来实现。

质量管理体系文件一般由四部分组成:

质量手册、程序文件、作业指导书、质量记录。

质量手册的核心是对质量方针目标、组织机构及质量体系要素的描述;程序文件是对完成各项质量活动的方法所作的规定;作业指导书是规定某项工作的具体操作程序的文件,也就是数据管理员常用的“操作手册”或“操作规程”等;质量记录是为完成的活动或达到的结果提供客观证据的文件。

完成质量管理体系文件后,要经过一段试运行,检验这些质量管理体系文件的适用性和有效性。

数据管理机构通过不断协调、质量监控、信息管理、质量管理体系审核和管理评审,实现质量管理体系的有效运行。

数据管理质量体系的建立、实施和运行是一个动态的过程,最重要的是要求数据管理相关人员将质量管理的理念贯彻到数据管理的日常工作之中。

(三)临床试验数据管理系统的基本要求

1.系统可靠性

系统可靠性是指系统在规定条件下、规定时间内,实现规定功能的能力。

临床试验数据管理系统必须经过基于风险的考虑,以保证数据完整、安全和可信,并减少因系统或过程的问题而产生错误的可能性。

计算机化的数据管理系统必须进行严谨的设计和验证,并形成验证总结报告以备监管机构的核查需要,从而证明管理系统的可靠性。

2.临床试验数据的可溯源性

临床试验数据管理系统必须具备可以为临床试验数据提供可溯源性(Traceability)的性能。

CRF中数据应当与源文件一致,如有不一致应作出解释。

对CRF中数据进行的任何更改或更正都应该注明日期、签署姓名并解释原因(如需要),并应使原来的记录依然可见。

临床试验数据的稽查轨迹(AuditTrail),从第一次的数据录入以及每一次的更改、删除或增加,都必须保留在临床试验数据库系统中。

稽查轨迹应包括更改的日期、时间、更改人、更改原因、更改前数据值、更改后数据值。

此稽查轨迹为系统保护,不允许任何人为的修改和编辑。

稽查轨迹记录应存档并可查询。

3.数据管理系统的权限管理

临床试验数据管理系统必须有完善的系统权限管理。

纸质化或电子化的数据管理均需要制定SOPs进行权限控制(AccessControl)与管理。

对数据管理系统中不同人员或角色授予不同的权限,只有经过授权的人员才允许操作(记录、修改等),并应采取适当的方法来监控和防止未获得授权的人的操作。

电子签名(ElectronicSignature)是电子化管理系统权限管理的一种手段。

对于电子化管理系统来说,系统的每个用户都应具有个人账户,系统要求在开始数据操作之前先登录账户,完成后退出系统;用户只能用自己的密码工作,密码不得共用,也不能让其他人员访问登录;密码应当定期更改;离开工作站时应终止与主机的连接,计算机长时间空闲时实行自行断开连接;短时间暂停工作时,应当有自动保护程序来防止XX的数据操作,如在输入密码前采用屏幕保护措施。

四、试验数据的标准化

临床试验数据标准化的意义在于:

标准化的数据格式是临床试验数据管理系统与临床试验机构建立医疗信息互通性的基础;在申办者内部不同研究之间建立无缝数据交换,并为申办者之间的交流,申办者与药物评审机构之间的交流提供便利;便于各临床试验的药物安全性数据共享;方便元数据(MetaData)的存储和监管部门的视察,为不同系统和运用程序之间数据的整合提供统一的技术标准;为审评机构提供方便,从而缩短审批周期;有助于数据质量的提升,可以更快地提供更高质量的数据。

(一)CDISC

CDISC(ClinicalDataInterchangeStandardsConsortium)是一个全球的、开放的、多学科的非盈利性组织,建立了涵盖研究方案设计、数据采集、分析、交换、递交等环节的一系列标准。

CDISC核心标准见下表。

标准

描述

研究数据列表模型(SDTM)

有关临床研究病例报告表数据标准,用于向监管部门递交的内容标准。

分析数据模型(ADaM)

有关分析数据集及元数据的基本原则和标准,用于向监管部门递交的内容标准。

XML技术(ODM、Define-XML与Dataset-XML)

操作数据模型(ODM)是基于XML概要描述如何遵循监管要求获取、交换和归档临床数据和元数据。

Define-XML是基于ODM的描述研究数据集的元数据标准。

Dataset-XML是基于ODM的描述研究数据集的XMLSchema说明。

受控术语集(CT)

支持CDISC模型/标准所涉及的标准词汇和编码集。

临床数据获取的协调标准(CDASH)

用于病例报告表中基础数据收集字段的内容标准。

实验室数据模型(LAB)

描述临床实验室和研究申办者/CRO间关于临床实验室数据的获取与交换的内容标准说明细则。

非临床数据交换标准(SEND)

描述临床前研究数据的内容标准。

方案呈现模型(PR)

基于BRIDG模型来描述临床研究方案元素和关系的工具。

治疗领域数据标准(TA)

为目标治疗领域确定的一套有关概念和研究终点等的标准,以提高语义的理解,支持数据共享、便于全球注册递交。

如阿尔茨海默病、心血管病、糖尿病等。

国际发达监管机构如美国FDA、日本医药品医疗器械综合机构(PMDA)将强制要求递交符合CDISC标准的电子数据,可见CDISC标准已越来越得到业内的认可和广泛使用,成为临床试验数据的国际“通用语言”。

为了提高临床试验数据质量以及统计分析的质量和效率,方便数据的交流与汇总分析,在新药上市注册申请时,建议采用CDISC标准递交原始数据库和分析数据库。

(二)医学术语标准

1.MedDRA

MedDRA作为新药注册用医学术语集,适用于政府注册管辖下所有的医疗和诊断产品的安全报告。

在临床研究、不良反应的自发性报告、注册报告、受政府注册管理的产品信息中都需要用到MedDRA。

MedDRA包含5级术语,分别是系统器官分类(SystemOrganClass,SOC)、高级别组术语(HighLevelGroupTerm,HLGT)、高级别术语(HighLevelTerm,HLT)、首选术语(PreferredTerm,PT)和低级别术语(LowLevelTerm,LLT)。

2.世界卫生组织药物词典

世界卫生组织药物词典是医药产品方面最综合的电子词典,为WHO国际药物监测项目的重要组成部分。

世界卫生组织药物词典采用解剖学、治疗学及化学分类系统对药物进行分类,一般被用于对临床试验报告中的合并用药、上市后不良反应报告以及其他来源的报告中提及的药品进行编码和分析。

世界卫生组织药物词典包括4种:

世界卫生组织药物词典(WHODD)、世界卫生组织药物词典增强版(WHODDE)、世界卫生组织草药词典(WHOHD)和综合词典(CombinedDictionary)。

3.WHOART术语集

WHOART是一个精确度较高的用于编码与药物治疗过程中的临床信息的术语集,涵盖了几乎所有不良反应报告所需的医学术语,可以以行列表的形式打印出来。

由于新药和新的适应证会产生新的不良反应术语,术语集的结构灵活可变,允许在保留术语集结构的基础上纳入新的术语,同时又不丢失之前术语间的关系。

WHOART包含4级术语,分别是系统器官分类(SystemOrganClass,SOC)、高级术语(Highlevelterm,HT)、首选术语(PreferredTerm,PT)和收录术语(Includedterms,IT)。

五、数据管理工作的主要内容

在进行临床试验数据管理之前,必须由数据管理部门根据项目实际情况制定数据管理计划(DataManagementPlan,DMP)。

数据管理计划应包括以下内容和数据管理的一些时间点并明确相关人员职责。

数据管理计划应由数据管理部门和申办方共同签署执行。

(一)CRF的设计与填写

1.CRF的设计

临床试验主要依赖于CRF来收集试验过程中产生的各种临床试验数据。

CRF的设计必须保证收集试验方案里要求的所有临床数据(外部数据除外)。

CRF的设计、制作、批准和版本控制过程必须进行完整记录。

CRF的设计、修改及最后确认会涉及多方人员的参与,可以包括申办者、申办者委托的CRO、研究者、数据管理和统计人员等。

一般而言,CRF初稿由申办者或CRO完成,但其修改与完善由上述各方共同参与,最终必须由申办者批准。

2.CRF填写指南

CRF填写指南是根据研究方案对于病例报告表的每页表格及各数据点进行具体的填写说明。

CRF填写指南可以有不同的形式,并可以应用于不同类型的CRF或其他数据收集工具和方式。

对于纸质CRF而言,CRF填写指南应作为CRF的一部分或一个单独的文档打印出来。

对EDC(ElectronicDataCapture)系统而言,填写指南也可能是针对表单的说明、在线帮助、系统提示以及针对录入数据产生的对话框。

保证临床试验中心在入选受试者之前获得CRF及其填写指南,并对临床试验中心相关工作人员进行方案、CRF填写和数据提交流程的培训,该过程需存档记录。

3.注释CRF

注释CRF是对空白CRF的标注,记录CRF各数据项的位置及其在相对应的数据库中的变量名和编码。

每一个CRF中的所有数据项都需要标注,不录入数据库的数据项则应标注为“不录入数据库”。

注释CRF作为数据库与CRF之间的联系纽带,帮助数据管理员、统计人员、程序员和药物评审机构了解数据库。

注释CRF可采用手工标注,也可采用电子化技术自动标注。

4.CRF的填写

临床研究者必须根据原始资料信息准确、及时、完整、规范地填写CRF。

CRF数据的修改必须遵照SOP,保留修改痕迹。

(二)数据库的设计

临床试验方案设计具有多样性,每个研究项目的数据收集依赖于临床试验方案。

临床试验数据库应保证完整性,并尽量依从标准数据库的结构与设置,包括变量的名称与定义。

就特定的研究项目来说,数据库的建立应当以该项目的CRF为依据,数据集名称、变量名称、变量类型和变量规则等都应反映在注释CRF上。

数据库建立完成后,应进行数据库测试,并由数据管理负责人签署确认。

(三)数据接收与录入

数据可以通过多种方式进行接收,如传真、邮寄、可追踪有保密措施的快递、监查员亲手传递、网络录入或其他电子方式。

数据接收过程应有相应文件记录,以确认数据来源和是否接收。

提交数据中心时应有程序保证受试者识别信息的保密。

数据录入流程必须明确该试验的数据录入要求。

一般使用的数据录入流程包括:

双人双份录入,带手工复查的单人录入,和直接采用EDC方式。

(四)数据核查

数据核查的目的是确保数据的完整性、有效性和正确性。

在进行数据核查之前,应列出详细的数据核查计划,数据核查包括但不局限于以下内容:

确定原始数据被正确、完整地录入到数据库中:

检查缺失数据,查找并删除重复录入的数据,核对某些特定值的唯一性(如受试者ID);

随机化核查:

在随机对照试验中,检查入组随机化实施情况;

违背方案核查:

根据临床试验方案检查受试者入选/排除标准、试验用药计划及合并用药(或治疗)的规定等;

时间窗核查:

核查入组、随访日期之间的顺序判断依从性情况;

逻辑核查:

相应的事件之间的逻辑关联来识别可能存在的数据错误;

范围核查:

识别在生理上不可能出现或者在研究人群的正常变化范围外的极端数值;

一致性核查:

如严重不良事件安全数据库与临床数据库之间的一致性核查,外部数据与CRF收集的数据一致性核查,医学核查等。

数据管理人员应对方案中规定的主要和次要有效性指标、关键的安全性指标进行充分的核查以确保这些数据的正确性和完整性。

数据核查应该是在未知试验分组情况下进行,数据质疑表内容应避免有偏差或诱导性的提问,诱导性的提问或强迫的回答会使试验的结果存有偏差。

数据核查可通过手动检查和电脑程序核查来实现。

数据核查程序应当是多元的,每个临床研究人员有责任采用不同的工具从不同的角度参与数据库的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 工作总结汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1