北京切诺基越野汽车离合器设计.docx

上传人:b****7 文档编号:9413454 上传时间:2023-02-04 格式:DOCX 页数:27 大小:275.03KB
下载 相关 举报
北京切诺基越野汽车离合器设计.docx_第1页
第1页 / 共27页
北京切诺基越野汽车离合器设计.docx_第2页
第2页 / 共27页
北京切诺基越野汽车离合器设计.docx_第3页
第3页 / 共27页
北京切诺基越野汽车离合器设计.docx_第4页
第4页 / 共27页
北京切诺基越野汽车离合器设计.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

北京切诺基越野汽车离合器设计.docx

《北京切诺基越野汽车离合器设计.docx》由会员分享,可在线阅读,更多相关《北京切诺基越野汽车离合器设计.docx(27页珍藏版)》请在冰豆网上搜索。

北京切诺基越野汽车离合器设计.docx

北京切诺基越野汽车离合器设计

第1章绪论

1.1离合器的设计要求

在任何条件下行驶,既能可靠的传递的发动机最大转矩,并有适当的转矩储备,有能防止传动系过载,接合时要完全,平顺,柔和,保证汽车起动时没有抖动和冲击,分离时要迅速,彻底,从动部分转动惯量要小,以减轻换挡时的变速器齿轮间的冲击,便于换挡和减少同步器的磨损。

应有足够的吸热能力和良好的通风能力,以保证工作时的温度不致过高,延长其使用寿命。

应能避免和衰减传动系的扭转和振动,并且具有吸收振动,缓和冲击和降低噪声的能力。

操纵轻便,准确,以减轻驾驶员的疲劳。

作用在从动盘的总压力和摩擦材料的摩擦因数在离合器工作过程中变化要尽可能小,以保证有稳定的工作性能。

具有足够的强度和动态平衡,以保证其工作可靠,使用寿命长。

结构简单,紧凑,质量小,制造工艺性好,拆装,维修,调整方便等。

[1]

1.2离合器的工作原理

当离合器工作时,发动机飞轮是离合器的主动部件,带有摩擦片的从动盘和从动盘毂借滑动花键和变速器第一轴(离合器从动轴)相连。

压紧弹簧将从动盘紧在飞轮端面上。

发动机转矩即靠飞轮和从动盘接触面之间的摩擦作用而传到从动盘上,在由此经过变速器的第一轴和传动系统中一系列部件传给驱动轮。

压紧弹簧的压紧力越大,则离合器所能传递的转矩也越大。

由于汽车在行驶过程中需经常保持动力传递,而中断传动只是暂时的需要,所以汽车离合器的主动部分和从动部分应经常处于接合状态。

摩擦副之间采用弹簧作为压紧装置即是为了适应这一要求。

欲使离合器分离时,只要踩下操纵机构中的离合器踏板,套在从动盘毂环槽中的拨叉便拨动从动盘,克服压紧弹簧的压力向右移动而和飞轮分离,摩擦副之间的摩擦力消失,从而中断了动力传递。

当需要重新恢复动力传递时,为使汽车速度和发动机转速的变化比较平稳,应该适当控制放松离合器踏板的速度,使从动盘在压紧弹簧的压力作用下向左移动,和飞轮恢复接触,二者接触面间的压力逐渐增加,相应的摩擦力矩也逐渐增加。

当飞轮和从动盘接合还不紧密,摩擦力矩比较小时,二者可以不同步旋转,即离合器处于打滑状态。

随着飞轮和从动盘接合紧密程度的逐步增大,二者的转速也渐趋相等。

直到离合器完全接合而停止打滑时,汽车速度才和发动机转速成正比。

[2]

摩擦离合器所能传递的最大转矩取决于摩擦副间的最大静摩擦力矩,而后者又取决于摩擦间的压紧力、摩擦因数以及摩擦面的数目和尺寸。

因此,对于结构一定的离合器来说,最大静摩擦力矩是一个定值。

当输入转矩达到此值时,则离压合器出现打滑现象,因而限制了传给传动系统的转矩,以防止超载。

由上述工作原理可以看出,摩擦离合器主要由主动部分、从动部分、压紧机构和操纵机构四部分组成。

主、从动部分和压紧机构是保证离合器处于接合状态并能传递动力的基本结构,而离合器的操纵机构主要是使离合器分离的装置。

在保证可靠的传递发动机最大转矩的前提下,离合器的具体结构应能满足主、从动部分分离彻底,接合柔和,从动部分的转动惯量要尽可能小,散热良好,操纵轻便,良好的动平衡等基本性能要求。

1.3离合器的分类

根据所用压紧弹簧布置位置的不同,可分为周布弹簧离合器、中央弹簧离合器和周布斜置弹簧离合器;根据所用压紧弹簧形式的不同,可分为圆柱螺旋弹簧离合器、圆锥螺旋弹簧离合器和膜片弹簧离合器。

[3]

膜片弹簧是一种由弹簧钢制成的具有碟形结构的碟形弹簧,主要有碟形弹簧部分和分离指部分组成。

膜片弹簧两侧有钢丝支撑圈,借6个膜片弹簧固定钉将起安装在离合器盖上。

再离合器盖没有固定到飞轮上时,膜片弹簧不受力,处于自由状态。

此时离合器盖和飞轮安装面之间有一距离。

当将离合器盖用连接螺钉固定到飞轮上时,由于离合器盖靠近飞轮,后钢丝支撑圈则压向膜片弹簧使之发生弹性变形,膜片弹簧的圆锥角变小,几乎接近于压平状态。

同时,在膜片弹簧的大端对压盘产生压紧力,使离合器处于接合状态。

当分离离合器时,分离轴承作移,膜片弹簧被压在前钢丝支撑圈上,其径向截面以支撑圈为支点右移,膜片弹簧变成反锥形状,使膜片弹簧大端右移,并通过分离弹簧钩拉动压盘使离合器分离。

1.4膜片弹簧离合器的优点

1、膜片弹簧具有较理想的非线性弹簧特性,弹簧压力在摩擦片的磨损范围基本保持不变,因而离合器在工作中能保持传递的转矩大致不变,相对圆柱螺旋弹簧,其压力大大下降,离合器分离时,弹簧压力有所下降,从而降低的踏板力。

对于圆柱螺旋弹簧,其压力大大增加;

2、磨片弹簧兼压紧弹簧和分离杠杆的作用,结构简单,紧凑,轴向尺寸小,零件数目少,质量小;

3、高速旋转时,弹簧压紧力降低很小,性能稳定;而圆柱螺旋弹簧压紧力则降低明显;

4、磨片弹簧以整个圆周和压盘相接触,使压力分布均匀,摩擦片接触良好磨损均匀;

5、易于实现良好的通风散热,使用寿命长;

6、磨片弹簧中心和离合器中心线重合,平衡性。

[2]

1.5设计内容

由于膜片弹簧离合器,具有零件数目少,重量轻,非线性特性好,操纵轻便等优点,且制造膜片弹簧的工艺水平在不断提高,所以本文将设计推式膜片弹簧离合器。

本设计以北京切诺基汽车各项参数和性能为设计基础,所选定汽车发动机提供的最大转矩Temax为200N⋅m。

第2章离合器基本参数的选择

2.1离合器基本性能关系式

离合器的基本功能之一是传递力矩,因此离合器转矩容量是离合器最为基本的性能之一。

通常它只能用来初步定出离合器的原始参数、尺寸,它们是否合适最终取决于试验验证。

根据摩擦力矩公式

(2.1)

式中:

Tc—离合器静摩擦力矩;β—后备系数;f—摩擦因数;Z:

摩擦面数;po—单位压力;D—摩擦片外径;c—内外径之比。

有了上面的关系式,对于一定的离合器结构而言,只要合理选择其中的参数,并能满足上面的关系式,就可估算出所设计的离合器是否合适[4]。

2.2离合器后备系数的选择

后备系数β是离合器一个重要设计参数,它反映了离合器传递发动机最大转矩的可靠程度。

显然,为可靠传递发动机最大转矩和防止离合器滑磨时间过长,

不宜选的太小;为是离合器尺寸不致过大,减少传动系过载,保证操纵轻便,

不宜选的太大;当发动机后备功率较大、使用条件较好时,

可选的小一些;当使用条件恶劣、需要拖带挂车时,为提高起步能力,减少离合器滑磨,

可选的大一些;汽车总质量大,

也应选得越大。

在选择β时,应保证离合器应能可靠地传递发动机最大转矩、要防止离合器滑磨过大、要能防止传动系过载。

其数值按表2.1选取,而设计本车的离合器其β要求比较的大,初步选择为1.60。

表2.1离合器后备系数β的取值范围

车型

后备系数

乘用车及最大总质量小于6t的商用车

1.20~1.75

最大总质量为6~14t的商用车

1.50~2.25

挂车

1.80~4.00

2.3摩擦材料中单位压力和摩擦因数的选择

石棉基摩擦材料的密度小,制造容易、价格低廉等优点,但受工作温度、单位压力、滑磨速度影响大,主要用于中、轻载荷的工作条件下,而粉末冶金材料的传热性好、热稳定性和耐磨性好、摩擦因数高,故在选择摩擦片材料是粉末冶金材料中的铁基[5]。

初选po根据表2.2中可得:

为0.5MPa,f为0.5。

表2.2摩擦材料中单位压力和摩擦因数的取值

摩擦片材料

单位压力po/MPa

摩擦因数f

石棉基材料

模压

0.15~0.25

0.20~0.25

编织

0.25~0.35

0.25~0.30

粉末冶金材料

铜基

0.35~0.50

0.25~0.30

铁基

0.35~0.50

金属陶瓷材料

0.70~1.50

0.4

2.4本章小结

在离合器的基本性能关系式中我们得知要用到后备系数;摩擦因数;单位压力等一些参数。

通过查阅资料,工具用书,图表等我能、我们可以对一些参数取值。

为我们接下来的设计计算提供一定帮助。

第3章离合器从动盘总成设计

3.1摩擦片的设计

摩擦片设计要求:

①摩擦因数较高且较稳固,工作温度,单位压力,滑磨速度的变化对其影响要小;

②具有足够的机械强度和耐磨性;

③密度要小,以减少从动盘的转动惯量;

④热稳定性好,在高温下分离出粘合剂力,无味,不易烧焦;

⑤磨合性能好,不致刮伤飞轮和压盘表面;

⑥接合时应平顺,而不产生“咬合”或“抖动”现象;

⑦长期停放后,摩擦面间不发生“粘着”现象。

离合器摩擦片所用的材料主要有石棉基摩擦材料、粉末冶金摩擦材料和金属陶瓷摩擦材料。

石棉基摩擦材料具有摩擦因数较高、密度较小、制造容易、价格低廉等优点。

但它性能不够稳定、摩擦因数受工作温度、单位压力、滑磨速度的影响大,故目前主要使用于中、轻载荷下工作。

由于石棉在生产和使用过程中对环境有影响,对人体有害,故以玻璃纤维、金属纤维来代替石棉纤维。

粉末冶金和金属陶瓷摩擦材料具有传热性好、热稳定性和耐磨性好、摩擦因数较高且稳定、能承受的单位压力较高以及寿命较长等优点,但价格较贵,密度较大,接合平顺性较差,主要使用于载荷质量较大的商用车上。

摩擦片和从动片的连接方式有铆接和粘接两种。

铆接方式连接可靠,更换摩擦片方便,适宜在从动片上安装波形片,但其摩擦面积利用率小,使用寿命短。

粘接方式可增大实际摩擦面积,摩擦片厚度利用率高,具有较高的抗离心力和切向力的能力;但更换摩擦片困难,且使从动盘难以安装波形片,无轴向弹性,可靠性低。

摩擦片材料:

粉末冶金材料(其具有传热性好,热稳定性和耐磨性好、摩擦因数较高而且稳定、能承受的单位压力较高及寿命较长等优点)。

摩擦片和从动片的连接方式:

铆接(因具连接可靠、更换摩擦片方便、适宜在从动盘上安装波形片而采用)。

摩擦片基本尺寸的确定。

摩擦片外径是离合器的基本尺寸,它关系到离合器的结构重量和使用寿命,它和离合器所需传递的转矩有一定的关系。

根据公式3.1:

(3.1)

式中:

Temax—发动机最大转矩;β—后备系数;f—摩擦因数;Z:

摩擦面数;po—单位压力;D—摩擦片外径;c—内外径之比

得到D=240mm。

计算离合器的外径D同时参考经验公式3.2:

(3.2)

式中:

A—参考系数;D—摩擦片外径;Temax—发动机最大转矩;

A取47,计算得到D=234mm。

初选D以后,还需根据摩擦片尺寸的系列化和标准化进一步确定[6]。

查找标准(GB1457—74)的规定:

表3.1离合器尺寸选择参数表

摩擦片外径D/mm

发动机最大转矩Temax/N⋅m

单片离合器

重负荷

中等负荷

极限值

225

130

150

170

250

170

200

230

……

……

……

……

最终确定:

外径D=250mm;内径d=155mm,内外径之比c=0.620,单片面积F=30200mm2。

对摩擦片的厚度h,我国以规定了3种规格:

3.2mm,3.5mm,4mm,这里选择厚度为3.5mm。

(2)摩擦片的校核。

在初步确定完摩擦片的基本尺寸后,要对摩擦片校核:

1)摩擦片外D(mm)的选择应使最大圆周速度vD不超过65~70m/s:

(3.3)

式中:

nemax—发动机的最高转速(r/min);

当nemax取6000时,代入可得:

vD=70≤65~70m/s。

2)摩擦片的内外径比c应在0.53~0.70范围内:

c=0.620∈{0.53~0.70}。

3)保证离合器可靠地传递发动机的转矩,并防止传动系过载,β应在1.2~1.75之间,代入式2—1:

β=Tc/Temax=1.60∈{1.20~1.75}。

4)为了减少汽车起步过程中的离合器的滑磨,防止摩擦片表面温度过高而发生烧伤,离合器每一次接合的单位面积滑磨功应小于其许用值,即:

(3.4)

式中:

ω—单位摩擦面积滑磨功(J/mm2);[ω]—其许用值0.4J/mm2;W—汽车起步时离合器接合一次产生的总滑磨功(J),可以根据下式计算:

(3.5)

式中:

ne—发动机转速,取2000r/min;ma—汽车总质量(kg),取1200kg;rr—汽车轮胎滚动半径(m);ig—汽车起步时所用变速器档位的传动比;数值取3.8;i0—主减速器传动比,取4.2。

各个数值代入3—5式得到:

W=14983J。

把W=14983J和摩擦片的各个数值代入式3.4,得:

ω=0.338J/mm2≤[ω]=0.4J/mm2。

经过校核可知,摩擦片的设计符合相应的设计要求[7]。

3.2从动盘毂的设计

从动盘数及干、湿式的选择单片干式摩擦离合器,这是因为结构简单,调整方便,轴向尺寸紧凑,分离彻底,从动件转动惯量小,散热性能好,采用轴向有弹性的从动盘时也能接顺平和等优点符合离合器的设计要求

发动机转矩是经从动盘毂的花键孔输出,花键之间为动配合,在离合器分离和结合的过程中,从动盘毂就能在花键轴上自由滑动。

我国生产的离合器,其从动盘毂花键多用SAE标准,其有关尺寸见表

表3.2从动盘毂花键的尺寸

摩擦片的外径D/mm

发动机的最大转矩

花键尺寸

挤压应力

齿数n

外径

内径

齿厚

有效齿长

160

49

10

23

18

3

20

9.8

180

69

10

26

21

3

20

11.6

200

108

10

29

23

4

25

11.1

225

147

10

32

26

4

30

11.3

250

196

10

35

28

4

35

10.2

280

275

10

35

32

4

40

12.5

300

304

10

40

32

5

40

10.5

325

373

10

40

32

5

45

11.4

350

471

10

40

32

5

50

13.0

查表3.2,可选花键尺寸如下齿数n=10、外径

mm、内径

=28mm、齿厚=4mm、有效齿长l=35mm

花键尺寸选定后应进行强度校核。

由于花键损坏的主要形式是由于表面受挤压过大而破坏,所以花键要进行挤压应力计算,当应力偏大时可适当增加花键毂的轴向长度。

花键的挤压应力σj:

(3.6)

式中:

Temax—发动机最大转矩;D—花键毂的外径;d—花键毂的内径;n—花键毂的齿数;l—花键毂的有效长度。

从动盘毂一般都由中碳钢锻造而成,并经调质处理,其挤压应力不应大于30MPa。

从动盘毂采用锻钢(40Cr),采用调质处理,表面和心部硬度在26~32HRC。

提高花键内孔表面硬度和耐磨度,可采用镀铬工艺;对减振弹簧窗口及从动片配合处,应进行高频处理。

3.3从动片和波形弹簧片的设计

设计从动片,要尽量减轻其重量,并使其质量的分布可能地靠近旋转中心,以获得最小的转动惯量。

为了减小转动惯量,从动片做的比较薄,一般在1.3mm—2.2mm。

根据设计的需要采用从动片的厚度为2mm,材料为中碳钢板(50号),表面硬度为35~40HRC,结构采用分开式弹性从动片结构。

波形片材料采用65Mn,厚度为0.7mm,硬度为40~46HRC,并经过表面发蓝处理。

3.4扭转减振器的设计

1,扭转减震器的组成和功能

扭转减震器主要由弹性元件、阻尼元件等组成。

弹性元件的作用是降低传动系的手段扭转刚度,从而降低传动系扭转系统的某阶段固有频率,改变系统的故有振型,使其尽可能避开由发动机转矩主谐量激励引起的共振;阻尼元件的作用是有效地耗散振动能量。

因此,扭转减震器具有如下功能;

(1)降低发动机曲轴和传动系接合部分的扭转刚度,调谐传动系扭振固有频率。

(2)增加传动系扭振阻尼,抑制扭转共振响应振幅,并衰减因冲击而产生的瞬态频率。

(3)控制动力传动系统总成怠速时离合器和变速器轴系的扭振,消减变速器怠速噪声和主减速器和变速器的扭转及噪声。

(4)缓和非稳定工况下传动系的扭转冲击载荷,改善离合器的接合平顺性。

2,扭转减震器的的扭转特性

扭转减振器具有线性和非线性两种特性。

单级线性减振器的扭转特性:

其弹性元件一般采用圆柱螺旋弹簧,广泛使用于汽油机汽车中。

当发动机为柴油机时由于怠速时发动机旋转不均匀度较大,常引起变速器常啮合齿轮间的敲击,从而产生令人厌烦的变速器怠速噪声。

在扭转减振器中,另设置一组刚度较小的弹簧,使其在发动机怠速工况下起作用,以消除变速器怠速噪声。

此时可得到两级非线性特性,第一级的刚度很小,称为怠速级;第二级的刚度较大。

在柴油机汽车中,目前广泛采用具有怠速级的两级或三级非线性扭转减振器。

3,由于发动机传到汽车传动系中的转矩是周期地不断变化的,从而使传动系统产生扭转振动。

若振动频率和传动系的自振频率相重合会发生共振,影响传动系中零件的寿命。

为避免共振,缓和传动系所受的冲击载荷,在许多汽车的传动系统中装设了扭转减振器,且大多数将扭转减振器附装在离合器的从动盘中[8]。

ab

图3.1扭转减振器工作示意图

a—静止状态;b—工作状态

1、2—减振弹簧;3—从动盘本体;4—阻尼片;

离合器接合时,发动机发出的转矩经飞轮和压盘传给了从动盘两侧的摩擦片,带动从动盘本体和和从动盘本体铆接在一起的减振器盘转动。

动盘本体和减振器盘又通过六个减振器弹簧把转矩传给了从动盘毂。

因为有弹性环节的作用,所以传动系受的转动冲击可以在此得到缓和。

传动系中的扭转振动会使从动盘毂相对于动盘本体和减振器盘来回转动,夹在它们之间的阻尼片靠摩擦消耗扭转振动的能量,将扭转振动衰减下来[9]。

扭转减振器的设计计算着重于减振弹簧。

(1)减振弹簧的材料。

选用60Si2MnA弹簧钢丝。

(2)减振弹簧个数Zj的选取。

根据表3.3,由于D=250mm,所以Zj取6。

表3.3减振弹簧个数的选取

摩擦片外径D/mm

225~250

250~325

325~350

>350

Zj

4~6

6~8

8~10

>10

(3)减振弹簧的位置半径R0。

减振弹簧的位置半径R0一般取(0.60~0.75)d/2,同时为了保证离合器可靠的传动发动机的转矩,减振弹簧位置直径2R0约小于摩擦片内径约50mm,所以取R0=55mm。

(4)极限转矩Tj。

极限转矩是指减振器在消除了限位销和从动盘毂之间的间隙时所能传递的最大转矩,即限位销起作用时的转矩。

它受限于减振弹簧的许用应力等因素,和发动机最大转矩有关,一般可取:

Tj=(1.5~2.0)Temax(3.7)

式中:

Temax—发动机最大转矩;Tj—极限转矩。

本车取相应系数为2.0,所以Tj=400N⋅m。

(5)扭转角刚度kϕ。

为了避免引起传动系统的共振,要合理选择减振器的扭转角刚度kϕ,使共振现象不发生在发动机常用的工作转速范围内。

kϕ取决于减振弹簧的线刚度及其结构布置尺寸:

kϕ=KZjR02×103(3.8)

式中:

K—每个减振弹簧的线性刚度(N/mm);Zj—减振弹簧的个数;R0—减振弹簧位置半径(m)。

减振器的角刚度既要满足传递足够大的转矩的要求,又要满足为了避开共振而尽量降低其值的要求,这在实际上是做不到的。

因此,减振器的角刚度kϕ的最后确定,常常是结构所允许的设计结果,设计时选kϕ为:

kϕ≤13Tj。

由于设计的是越野车的发动机,常工作时的转速是较高的,且保证发动机的工作较稳定,所以选择kϕ较小,取kϕ=10Tj=4000N⋅m。

这样每个弹簧的线性刚度为K=kϕ/(KZjR02)=2.1×106N/mm。

(6)阻尼摩擦转矩Tμ。

由于减振器扭转刚度kϕ受结构及发动机最大转矩的限制,不肯能够很低,故为了在发动机工作转速范围内最有效地消振,必须合理选择减振器的阻尼摩擦转矩Tμ,一般可选:

Tμ=(0.06~0.17)Temax(3.9)

式中:

Tμ—阻尼摩擦转矩;Temax—发动机最大转矩。

按经验选Tμ=0.12Temax=24N。

(7)预紧转矩Tn。

减振弹簧在安装时都有一定的预紧力。

研究表明,Tn的增加,共振频率将向减小频率的方向移动,这是有利的。

但Tn不应大于Tμ,否则在反向工作时,扭转减振器将提前停止工作,故取:

Tn=(0.05~0.17)Temax(3.10)

式中:

Tn—预紧转矩;Temax—发动机最大转矩。

取Tn=0.10Temax=20N。

(8)极限转角ϕj。

减振器从预紧转矩Tn增加到极限转矩Tj时,从动片相对从动盘毂的极限转角ϕj为

(3.11)

式中:

ϕj—极限转角;R—减振弹簧位置半径;∆l—减振弹簧的工作变量。

ϕj通常取3o~12o,由于设计的乘用车的离合器,所以对发动机的平顺性要求较高,所以ϕj取9o。

3.5本章小结

从动盘对离合器来说是一个十分重要的部件它由摩擦片;从动盘毂;从动片;波形弹簧片;扭转减震器等部件组成。

所以其设计的好坏对离合器的总体性能起着决定

性的作用,因此在设计过程中我们要对其各项结论精细的计算和校核,使其达到预期标准。

第4章离合器压盘总成设计

4.1压盘的设计

压盘是离合器的主动部分,在传递发动机转矩时,它和飞轮一起带动从动盘转动,所以它必须和飞轮有一定的联系,但这种联系有应允许压盘在离合器分离过程中自由的做轴向移动,使压盘和从动盘脱离接触。

压盘和飞轮间常用的连接方式有凸台式、键式和销式。

但这些连接方式在离合器分离和结合的过程中,由于传力零件之间有摩擦,将降低离合器操纵部分的传动效率。

为了消除上述缺点,在设计中采用传力片式。

在离合器的基本参数选定后,压盘的基本尺寸应和摩擦片的外径和内径相同,确定压盘的厚度应符合下面四点要求。

(1)压盘应具有较大质量,以增大热容量,减少温升。

使用下式校核压盘的一次接合的温升:

(4.1)

式中:

t—压盘温升(oC);c—压盘的比热容,铸铁:

c=481.4J/(kg·oC);m—压盘质量(kg),经计算约为4.2kg;W—汽车起步时离合器接合一次产生的总滑磨功(J),经上面计算得W=14983J;γ—传到压盘的热量所占的比例,对于单片离合器压盘:

γ=0.5。

根据式4—1得:

t=3.7oC≤8oC。

(2)盖的膜片弹簧支撑处应具有高的尺寸精度,否则回造成分离不彻底;

(3)压盘应具较大的刚度。

能使压紧力在摩擦面上的压力分布均匀并减少受热后翘曲变形,以免影响摩擦片的均匀压紧及和离合器的彻底分离[8]。

(4)为了便于通风散热,防止摩擦片表面温度过高,可在离合器盖上开较大的通风窗口,或在盖上加通风扇片,本设计采用前者。

和飞轮保持良好的对中,并要进行静平衡,压盘单件的平衡精度不低于15~20g·cm

基于以上四点,选取压盘的厚度为12mm。

由于压盘的形状较复杂,要求传热性好,具有较高的摩擦因数,所以采用灰铸铁,采用HT300,硬度为170~227HBS,另外添加少量的金属元素(镍铁合金)以增加其机械强度[10]。

4.2离合器盖的设计

(1)离合器盖结构设计要求。

应具有足够的刚度,否则将影响离合器的工作特性,增大操纵时的分离行程,减小压盘升程,严重时使摩擦面不能彻底分离。

为此可采用如下的措施:

适当的增大盖的板厚,使钢板厚度达到4mm;在盖内的圆周处翻边。

离合器盖应和飞轮保持良好的对中,以免影响总成的平衡和正常的工作,其膜片弹簧支承处应具有高的尺寸精度。

(2)离合器盖的材料。

由于设计的离合器是乘用车用的,所以离合器盖的加工工艺为冲压制造,所以采用的是4mm的10号钢板冲压而成[11]。

4.3传力片的设计

传力片的作用是在离合器接合时,离合器盖通过它来驱动压盘共同旋转,分离时,又可以利用它的弹性来牵动压盘轴向分离并使操纵力减小。

传力片为3组,每组2片,每片厚度为0.8mm,由65Mn的弹簧钢带制成。

在布置传力片时要注意,通常情况下传力

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1