基于DS1820组件的数字温度计设计.docx
《基于DS1820组件的数字温度计设计.docx》由会员分享,可在线阅读,更多相关《基于DS1820组件的数字温度计设计.docx(42页珍藏版)》请在冰豆网上搜索。
基于DS1820组件的数字温度计设计
河北工业大学
毕业设计说明书(论文)
作者:
王亮学号:
078303
系:
电子系
专业:
电子信息工程
题目:
基于DS1820组件的数字温度计设计
指导者:
庞晶
(姓名)(专业技术职务)
评阅者:
(姓名)(专业技术职务)
2010年5月21日
河北工业大学
毕业论文
作者:
王亮学号:
078303
系:
电子系
专业:
电子信息工程
题目:
基于DS1820组件的数字温度计设计
指导者:
(姓名)(专业技术职务)
评阅者:
(姓名)(专业技术职务)
2010年5月21日
题目:
基于DS1820组件的数字温度计设计
摘要:
随着时代的进步和发展传感器技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术,本文主要介绍了一个基于DS1820组件的测温系统,详细描述了利用数字温度传感器DS1820开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。
DS1820与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量或远程测控,有广泛的应用前景。
关键词:
单片机;温度检测;AT89S51;DS1820;
TitleDS1820component-baseddesignofdigitalthermometer
Abstract:
Asthetimesprogressanddevelopmentofsensortechnologyhasspreadtoourlives,work,researchinvariousfieldshasbecomearelativelymaturetechnology,thispaperpresentsacomponentbasedontheDS1820temperaturemeasurementsystem,adetaileddescriptionoftheuseofdigitaltemperaturesensorDS1820temperaturemeasurementsystemdevelopmentprocess,focusingonthesensorundertheSCMhardwareconnections,softwareprogramming,andthemodulesystemprocessandadetailedanalysisofthevariouspartsofthecircuitswereintroducedonebyone,thesystemcaneasilyachieveachievetemperatureacquisitionanddisplay,andcanbearbitrarilysetupperandloweralarmtemperature,itisveryconvenienttouse,highaccuracy,widerrange,highsensitivity,smallsize,lowpowerconsumption,suitableforourdailylifeandworkagriculturalproductioninthetemperaturemeasurement,temperatureprocessingmodulecanalsobeembeddedasothersystems,asothersupportingexpansionofthemainsystem.DS1820withAT89C51combinedtorealizethemostsimpletemperaturedetectionsystem,Gaisystemissimple,anti-jammingcapability,suitableforharshenvironmentsXiaJinXingfieldtemperaturemeasurementsorremotemonitoringandcontrol,thereGuangfantheapplicationprospects.
Keywords:
microcontroller;temperaturedetection;AT89S51;DS1820;
目次
7.总结………………………………………………………………………………………………28
附录…………………………………………………………………………………………………29
1、引言
随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。
在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,不仅在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要现实意义。
温度的测量关键在测,先测才能有量。
传感器就是测得工具。
温度传感器的发展经历了三个发展阶段:
①传统的分立式温度传感器
②模拟集成温度传感器
③智能集成温度传感器。
目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。
社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS1820的结构特征及控制方法,并对以此传感器,AT89S51单片机为控制器构成的数字温度测量装置的工作原理及程序设计作了详细的介绍。
与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,主要用于对测温要求比较准确的场所,或科研实验室使用,或远程测控。
该设计控制器使用ATMEL公司的AT89S51单片机,测温传感器使用DALLAS公司DS1820,用LED数码管来实现温度显示。
2、设计内容及性能指标
本设计主要是介绍了在单片机控制下的测温系统,能够直观显示出温度数值。
当温度超过上限或低于下限能够报警。
3、系统方案论证与比较
该系统主要由温度测量和数据采集两部分电路组成,实现的方法有很多种,下面将列出两种实现方案。
3.1、方案一
采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成(热电偶的构成如图3.1),热电偶产生的热电势由两种金属的接触电势和单一导体的温差电势组成。
通过将参考结点保持在已知温度并测量该电压,便可推断出检测结点的温度。
数据采集部分则使用带有A/D通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。
热电偶的优点是工作温度范围非常宽,且体积小,但是它们也存在着输出电压小、容易遭受来自导线环路的噪声影响以及漂移较高的缺点,并且这种设计需要用到A/D转换电路,感温电路比较麻烦。
图3.1热电偶电路图
系统主要包括对A/D0809的数据采集,自动手动工作方式检测,温度的显示等,这几项功能的信号通过输入输出电路经单片机处理。
此外还有复位电路,晶振电路,启动电路等。
故现场输入硬件有手动复位键、A/D转换芯片,处理芯片为51芯片,执行机构有4位数码管、报警器等。
系统框图如图3.2所示:
图3.2热电偶温差电路测温系统框图
3.2、方案二
采用数字温度芯片DS1820测量温度,输出信号全数字化。
便于单片机处理及控制,省去传统的测温方法的很多外围电路。
且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好。
在0—100摄氏度时,最大线形偏差小于1摄氏度。
DS1820的最大特点之一采用了单总线的数据传输,由数字温度计DS1820和微控制器AT89S51构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。
这样,测温系统的结构就比较简单,体积也不大。
采用51单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。
既可以单独对多DS1820
控制工作,还可以与PC机通信上传数据,另外AT89S51在工业控制上也有着广泛的应用,编程技术及外围功能电路的配合使用都很成熟。
该系统利用AT89S51芯片控制温度传感器DS120进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限报警温度。
该系统扩展性非常强,它可以在设计中加入时钟芯片DS1302以获取时间数据,在数据处理同时显示时间,并可以利用AT24C16芯片作为存储器件,以此来对某些时间点的温度数据进行存储,利用键盘来进行调时和温度查询,获得的数据可以通过MAX232芯片与计算机的RS232接口进行串口通信,方便的采集和整理时间温度数据。
系统框图如图3.3所示
图3.3DS1820温度测温系统框图
从以上两种方案,容易看出方案一的测温装置可测温度范围宽、体积小,但是线性误差较大。
方案二的测温装置电路简单、精确度较高、实现方便、软件设计也比较简单,故本次设计采用了方案二。
4、系统器件选择
4.1、单片机的选择
对于单片机的选择,可以考虑使用8031与8051系列,由于8031没有内部RAM,系统又需要大量内存存储数据,因而不适用。
AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4kbytes的可编程的Flash只读程序存储器,兼容标准8051指令系统及引脚。
它集Flash程序存储器既可在线编程(ISP),也可用传统方法进行编程,所以低价位AT89S51单片机可为提供许多高性价比的应用场合,可灵活应用于各种控制领域,对于简单的测温系统已经足够。
单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。
主要特性如下
●与MCS-51兼容
●4K字节可编程闪烁存储器
●寿命:
1000写/擦循环
●数据保留时间:
10年
●全静态工作:
0Hz-24Hz
●三级程序存储器锁定
●128*8位内部RAM
●32可编程I/O线
●两个16位定时器/计数器
●5个中断源
●可编程串行通道
●低功耗的闲置和掉电模式
●片内振荡器和时钟电路
图4.1AT89S51单片机引脚图
AT89S51引脚功能介绍
AT89S51单片机为40引脚双列直插式封装。
其引脚排列和逻辑符号如图4.1所示。
各引脚功能简单介绍如下:
●VCC:
供电电压
●GND:
接地
●P0口:
P0口为一个8位漏级开路双向I/O口,每个管脚可吸收8TTL门电流。
当P1口的管脚写“1”时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FLASH编程时,P0口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部电位必须被拉高。
●P1口:
P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入“1”后,电位被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
●P2口:
P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚电位被内部上拉电阻拉高,且作为输入。
作为输入时,P2口的管脚电位被外部拉低,将输出电流,这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉的优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
●P3口:
P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入时,由于外部下拉为低电平,P3口将输出电流(ILL),也是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口:
P3.0RXD(串行输入口)
P3.1TXD(串行输出口)
P3.2INT0(外部中断0)
P3.3INT1(外部中断1)
P3.4T0(记时器0外部输入)
P3.5T1(记时器1外部输入)
P3.6WR(外部数据存储器写选通)
P3.7RD(外部数据存储器读选通)
同时P3口同时为闪烁编程和编程校验接收一些控制信号。
●RST:
复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
●ALE/PROG:
当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:
每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时,ALE只有在执行MOVX,MOVC指令时ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
●PSEN:
外部程序存储器的选通信号。
在由外部程序存储器取址期间,每个机器周期PSEN两次有效。
但在访问外部数据存储器时,这两次有效的PSEN信号将不出现。
●EA/VPP:
当EA保持低电平时,访问外部ROM;注意加密方式1时,EA将内部锁定为RESET;当EA端保持高电平时,访问内部ROM。
在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
●XTAL1:
反向振荡放大器的输入及内部时钟工作电路的输入。
●XTAL2:
来自反向振荡器的输出。
4.2、温度传感器的选择
由于传统的热敏电阻等测温元件测出的一般都是电压,再转换成对应的温度,需要比较多的外部元件支持,且硬件电路复杂,制作成本相对较高。
这里采用DALLAS公司的数字温度传感器DS1820作为测温元件。
4.21DS1820简介:
DALLAS最新单线数字温度传感器DS1820是一种新型的“一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。
DALLAS半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。
温度测量范围为-55~+125摄氏度,可编程为9位~12位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM中,掉电后依然保存。
被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS1820可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS1820通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。
因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。
DS1820的性能特点如下:
●独特的单线接口方式,DS1820在与微处理器连接时仅需要一条口线即可实现微处理器与DS1820的双向通讯
●DS1820支持多点组网功能,多个DS1820可以并联在唯一的三线上,实现组网多点测温
●DS1820在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内
●适应电压范围更宽,电压范围:
3.0~5.5V,在寄生电源方式下可由数据线供电
●温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃
●零待机功耗
●可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温
●在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快
●用户可定义报警设置
●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件
●测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力
●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作
以上特点使DS1820非常适用与多点、远距离温度检测系统。
DS18B20内部结构主要由四部分组成:
64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
DS1820的管脚排列、各种封装形式如图4.2所示,DQ为数据输入/输出引脚。
开漏单总线接口引脚。
当被用着在寄生电源下,也可以向器件提供电源;GND为地信号;VDD为可选择的VDD引脚。
当工作于寄生电源时,此引脚必须接地。
其电路图
4.3所示.。
图4.3传感器电路图图4.2外部封装形式
4.22DS1820使用中的注意事项
DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:
●DS1820从测温结束到将温度值转换成数字量需要一定的转换时间,这是必须保证的,不然会出现转换错误的现象,使温度输出总是显示85。
●在实际使用中发现,应使电源电压保持在5V左右,若电源电压过低,会使所测得的温度精度降低。
●较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。
在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。
●在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个DS1820,在实际应用中并非如此,当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。
●在DS1820测温程序设计中,向DS1820发出温度转换命令后,程序总要等待DS18B20的返回信号,一旦某个DS1820接触不好或断线,当程序读该DS1820时,将没有返回信号,程序进入死循环,这一点在进行DS1820硬件连接和软件设计时也要给予一定的重视。
4.23DS1820内部结构
图为DS1820的内部框图,它主要包括寄生电源、温度传感器、64位激光ROM单线接口、存放中间数据的高速暂存器(内含便笺式RAM),用于存储用户设定的温度上下限值的TH和TL触发器存储与控制逻辑、8位循环冗余校验码(CRC)发生器等七部分。
DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图4.4所示
图4.4DS1820内部结构框图
64b闪速ROM的结构如下:
开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS1820可以采用一线进行通信的原因。
温度报警触发器TH和TL,可通过软件写入户报警上下限。
主机操作ROM的命令有五种,如下:
DS1820温度传感器的内部存储器还包括一个便笺式RAM和一个非易失性的可电擦除的EERAM。
便笺式RAM的结构为8字节的存储器,结构如图4.5所示。
图4.5便笺式RAM结构图
前2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。
便笺式RAM的第4、5字节保留未用,表现为全逻辑1。
第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。
。
DS1820工作时寄存器中的分辨率转换为相应精度的温度数值。
TMR1R011111
该字节各位的定义如下:
当DS1820接收到温度转换命令后,开始启动转换。
转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在便笺式RAM的第1,2字节。
单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0.0625℃/LSB形式表示。
温度值格式如下:
这是12位转化后得到的12位数据,存储在DS1820的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。
图中,S表示位。
对应的温度计算:
当符号位S=0时,表示测得的温度植为正值,直接将二进制位转换为十进制;当S=1时,表示测得的温度植为负值,先将补码变换为原码,再计算十进制值。
例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。
DS1820温度传感器主要用于对温度进行测量,数据可用16位符号扩展的二进制补码读数形式提供,并以0.0625℃/LSB形式表示。
表1是部分温度值对应的二进制温度表示数据。
表1部分温度值
DS1820完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较,若T>TH或T因此,可用多只DS1820同时测量温度并进行告警搜索。
在64位ROM的最高有效字节中存储有循环冗余校验码(CRC)。
主机根据ROM的前56位来计算CRC值,并和存入DS1820中的CRC值做比较,以判断主机收到的ROM数据是否正确。
4.24DS1820测温原理
DS1820的测温原理如图4.6所示,图中低温度系数晶振的振荡频率受温度的影响很小用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS1820就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量.计数门的开启时间由高温度系数振荡器来决定,