DCOFDM超宽带物理层Matlab建模及高分集增益的解映射模块设计.docx
《DCOFDM超宽带物理层Matlab建模及高分集增益的解映射模块设计.docx》由会员分享,可在线阅读,更多相关《DCOFDM超宽带物理层Matlab建模及高分集增益的解映射模块设计.docx(201页珍藏版)》请在冰豆网上搜索。
DCOFDM超宽带物理层Matlab建模及高分集增益的解映射模块设计
DCOFDM超宽带物理层Matlab建模及高分集增益的解映射模块设计
撼要
摘要
近年来,隧着半导体工艺技术和数字通信技术的发展,各种各样的无线通信技术层出不穷。
在这些新的技术中,超宽带(UltraWideBand,UNB)技术是一种非常有优势的短距离无线通信技术。
它具有速度快、功耗低、保密性好等优点,因诧非常适合作为短距离无线个域网的传输技术。
根据计算机网络结构体系,配合超宽带技术的应用,欧洲电脑厂商协会(EuropeanComputerManufacturersAssociation,ECMA)368标准已经通过了国际标准纯组织(InternationalStandardOrganization,ISO)认证,成为了超宽带系统物理层技术标准。
但是由于超宽带系统占用的频带范围很宽,并且对发送信号的频谱有特定的要求,因此不同国家根据本国无线通信领域的实际情况各自制定了相应的符合本国特点的超宽带标准,用于超宽带实现。
磊露对予系统实现,建立模型是蓄要也是至关重要的环节,模型的准确度和实用性与硬件设计的可靠性密切相关。
本文针对基于DC.OFDM技术的中国标准的超宽带物理层基带系统进
行了Matlab建模。
在系统模型的建立过程中,通过分析量化各个模块的硬件实现与算法攒述之间存在的差异,采用模块定点输入输出数据的方式最大化逼真系统的硬件性能。
在系统模型仿真中,通过改变采样频偏,载波频偏,噪声,多径等各种信道环境影响因素来验证算法的可靠性,为硬件实现及芯片设计提供了验证和分析的基确。
羁时,为了更好酶利用超宽带技术在宽频谱上的优势,本文还提出了基于分集技术的双载波解映射算法,通过最大比值合并分集技术及补偿信道分集技术,最大化的提取分集增益,使系统整体性能提高了1.5dB。
结合该算法,本文对系统中的关键信号处淫模块映射(mapping)缌映射(demapping)模块进行了硬件实现设计,设计利用系统单工工作原理进行了模块复用性设计,不仅能使系统在实现中面积和功耗减半,并且可以同时兼容ECMA368和DC-OFDM两种标准。
关键词:
超宽带,中国标准,双载波,建模,硬件设计,分集
中图分类号:
TN914.3
in
Abstract
Abstract
Duetothedevelopmentofsemiconductoranddigitalcommunicationtechnology,amountsofwirelesscommunicationtechnologyhavebeenpresentedrecently.Amongthosetechniques,UltraWideBandⅣWB)technologyisanoutstandingshortdistancewirelesscommunicationtechnology。
Withthecharactersoffastspeed,lowpowerconsumptiOnandhigIlsecurity,itisaperfectcommunicationtechnologyforWirelessPersonalAreaNetwork(WPAN).
AccordingtotheapplicationenvironmentsoftheUWBtechniques,theInternationalStandardOrganization0so)haspassedtheEuropeanComputerManufacturersAssociation(ECMA)368standardtobetheUWBphysicallayerstandard。
BecauseofthewidebandwidthandfrequencyspectrmncharactersofUWBsystem,everycountrydraRstheirownUWBstandardsaccordingtotheirown
situations.Forthesystemimplementation,modelingisthefirstimportantpart.Theaccuracyandpracticalityofmodelareinhighaccordancewiththehardwareimplementation.ThethesismainworkistosetuptheMatlabmodeloftheDualCarriers--OrthogonalFrequencyDivisionMuRiplexing(DC·-OFDM)UWBphysicallayersystemwhichisdesignedbyChinaElectronicsStandardInstitute(CESO.Inthemodelingcourse,thethesisanalyzesthedifferencesbetweenhardwareimplementationandalgorithmsimulation,andUSefix—pointedtoquantizetheinputsandoutputsofthemodules,SOthatthemodelismorepractical.Inthesystem
simulation,bychangingtheSampleFrequencyOffset《sFO舅CarrierFrequencyOffset(CFO),NoiseandMulti—pathinterferences,themodelisverifiedandsetsupthestablefoundationforthehardwaredesign.What’Smore,inordertomakefullUSe
ofthewideband,thisthesisUseSdiversitydemappingmethodfortheDualCarrier
Modulation.Accordingtothebiggestcombineratiodiversitytechniqueandestimated
channeldiversitytechnique,thebiggestdiversitygainCanbegot,andtheperformanceisimprovedbY1.5dB。
Consideringthediversitydcmappingalgorithm,inthehardwareimplementation,mappinganddemappingmodulesaledesignedforhardwarereuse.Thiscannotonlydecreasetheareaandthepower,butalsobe
compatiblewithECMA368andDC—OFDMstandard.
Abstract
Keyword:
UWB,DC·OFDM,DCM,Modeling,hardwaredesign,diversityClassificationCode:
TN914.3
II
ListofAbbreviations
ListofAbbreviations
ADCAnalogtoDigitalConvertersx
ADSLAsymmetricDigitalSubscriberLoop
APKCombinationofASKandPSK
AWGNAdditive晒iteGaussianNoise
BPSKBinaryPhaseshiftkeying
CDM【ACodeDivisionMultipleAccess
CESIChinaElectronicsStandardInstitute
CFoCarrierFrequencyOffset
CPCyclicPrefix
CPFSKContinuous.PhaseFSK
DAADetectandAvoid
DABDigitalAudioBroadcasting
DACDi舀taltoAnalogConverter
DCMDual.CarrierModulationDC.OFDMDualCarriers.OFDMDSDirectSequence
ECMAEuropeanComputerManufacturersAssociation
EⅡ心EffectiveIsotropicRadiatedPower
FCCFederalCommunicationsCommission
FDMFrequencyDivisionModulation
FFIFixedFrequencyInterleaving
FliTFastFourierTransformation
FSKFrequencyshiRkeying
HCSHeaderCheckSequence
IFIntermediatefrequency
IFFTInverseFFT
ISIInter-SymbolInterference
ISoIntemationalStandardOrganization
ITRSIntemationalTechnologyRoadmapforSemiconductorITUIntemationalTelecommunicationIJnion
VI
ListofAbbrevialJOl岱
mLongTermEvolution
LNALow-NoiseAmplifier
mCMediaAccessControl
ⅣmMulti.Band
M皿oAMulti-band0FDMAlliance
oFDMOrthogonalFrequencyDivisionMultiplexing
PAPRPeakandAveragePowerRatio
PDFProbabilityDensityFunction
PLCPPhysicalLayerConvergenceProtocol
PRBSPseudo-RandomBinarySequence
PSKPhaseshiftkeyi】ag
QAMQuadraticAmplitudeModulation
QPSKQuaternaryPhaseShiRKeying)
RFRadioFrequency
SOCSystemonChip
SNRSignal-to-noiseratio
TFCTimeFrequencyCode
UWBUltra、阢deBand
VLSIVe巧LargeScaleIntegrated
、7l,IANWirelessLocalAreaNetwork
Ⅵ僵IANWirelessPersonalAreaNetwork
VⅡ
ListofFigun络
ListofFigures
Figurel-lRestrictionsFCCprovidedforindoorandoutdoorUWBpower..2Figure:
2·-1Digitalcommunicationpathway..12Figure2-2Digitalmodulations(a)PSK(b)FSK(c)ASK(d)ASK/PSK(APK)..18Figure2-3OPSKconstellation..................22
Figure2-4ConstellationdiagramofanM·aryQAM(M216)signalset23
Figure3·lDC·OFDMUWBsystemfrequencyspectrumdivision..28
Figure3-2DC-·OFDMUWBsystemframework...29
Figure3-3DC-OFDMUWBsystemPLCPframeformat.30
Figure3-4DC-OFDMUWBsystemstandardpreambleformat31
Figure3-5Convolutionencoder:
rateR2l/3,constraintlengthK2733
Figure3-6Anexampleofthebit-stealingandbit-insortionprocedure(R=l/2).33
Figure3-7Anexampleofthebit-stealingandbit-insertionprocedure(R=5/8).34
Figure3-8Anexampleofthebit-stealingandbit·insertionprocedure(R--3/4)34
Figure3-9Ablockdiagramofthevariousstagesofthebitinterleaver.36Figure3··10QPSKconstellationbitencoding.37Figure3-1lDCMencoding:
(a)mappingfor讲七】;Co)mappingford【k+50]39
Fignm3-12FrequencyinputandtimeoutputoftheⅢFT43
Figure3··13Sub-carriersallocgions44
Figure3·14Tune-domainOFDMsymbolformat.44
Figure3-15802.15.3achannelmodels’responseexamples46
Figure3-16Systemperformanceindifferentchannelenvironmentsandrates.47Figure4一lApictorialrepresentationofDCMconstellation.51Figure4-2Calculationandselectionofsoftdecisionvalues....................................54Figure4-3Thepacketerrorratecomparationwithdifferentdemappingmethods...63
Figure4-4ThehardwarestructureoftheDCMdiversitydemodulation64
Figure4-5Mappingmodulestructure..65Figure4-6Mappinginputs/outputsinterference....65Figure4-7Mappinginput/outputtiming(2path)..66
Figure4-8MappinginpuVoutputtiming(4path)..66
Figure4-9MappinginpuVoutputtiming(8paths).67
Figure4-10Timingwiththepayloadinrate=320Mbps/400Mbps/480Mbpsafterheader..68
VIll
ListofFigures
Figure4-11Timingwiththepayloadinrate=320Mbps/400Mbps/480Mbpsafterregulation
...........68
Figure4·12Timingwiththepayloadinrate=53.2Mbps/80Mpbsafterheader..68Figure4-13Timingwiththepayloadinrate=106.4Mbps/160Mbps/200Mbpsafterheader69Figure4·14Demappingmodulestructure69
Figure4-15Interfacedescription........70Figure4·16Demappingtiminginlowspeedmode.70Figure4··17Demappingtiminginmiddlespeedmode.....71
Figure4—18Demappingtiminginhighspeedmode72
Figure4-19Timingdescriptionwithspeedchangingfrom00to01一72
Figure4·20Timingdescriptionwithspeedchangingfrom00to10..72
Figure4-21Blockdiagramofmapping.74
Figure4-22Blockdiagramofdemapping...75
Figure5-1UWBtransmitter.76
Figure5-2UWBreceiver......81
IX
ListofTabl鹤
ListofTables
Table2.1BandwidthandPowerEfficiencyofQAM......。
24mlble3.1DC.OFDMUWBsystemmainparameters...........28tIble3.2PHYHeaderparameters.31
Table3.3Scramblerseedselection...32Table3.4Rate.dependentparameters................................35
Tablc3.5ParametersfortheInterleavemodule..36
Table3.6QPSKEncodingTable.”37Table3.7Dual-carrierModulationEncodingTable..39
mIble3.8Datasub-carrierspositionM(n)。
40
Table4.1Themappingbetweenthebitsandthecomplexsymbols.48
Table4.2Selecti∞ofsoftdecisionvalues54
mlble4.3Systemparameters-162
雨Ible4.4Systemparameters-2(accordingtoDC-OFDMstandar0)..62
Table4.5Mappinghardwareutilization..69Tablc5.1Thedatathroughputandtheparallelfactorforeachmodule..77
X
Chapter1Introduction
1.1ResearchBackground
1.1.1IntroductionoftheUVCBCommunicationTechnology
ThehistoryoftheUWBtechnologyCallbetracedbackto1942whenDeRosafiledinapatentonrandompulsesystem.Inthe1960’S,furtherresearchontime·domainelectromagnetismpromotedthedevelopmentoftheUWBtechnology.In
1973,SperrywasgrantedthefirstpatentrelatedtotheUWBcommunicationtechnology.Sincethen,thetheoryandtechnologyonUWBhavebeendevelopedrapidlyandanumberofrelatedequipmenthasbecomeavailable.In1989inparticular,
theU.S.DepartmentofDefensecoinedthename”ultra-wideband”,atermthathas
beenwidelyacceptedbytheindustryaswell勰theacademia.
OwingtOitshighprecisionintiming,UWBhasbeenappliedtomanyradarsystems.Withthedevelopmentofhigh-speedexchangetechnologies,ithasgraduallybeenfoundthatUWBisactuallyofpotentialinotherlow-costcommunication
applications,especiallyforshortdistancewirelesscommunicationsystems.OnApril22nd,2002,theUnitedStatesFederalCommunicationsCommission(FCC)rel