逆向工程毕业设计外文翻译在逆向工程中对适合曲线的数据点云的预处理.docx

上传人:b****8 文档编号:9227277 上传时间:2023-02-03 格式:DOCX 页数:22 大小:1.53MB
下载 相关 举报
逆向工程毕业设计外文翻译在逆向工程中对适合曲线的数据点云的预处理.docx_第1页
第1页 / 共22页
逆向工程毕业设计外文翻译在逆向工程中对适合曲线的数据点云的预处理.docx_第2页
第2页 / 共22页
逆向工程毕业设计外文翻译在逆向工程中对适合曲线的数据点云的预处理.docx_第3页
第3页 / 共22页
逆向工程毕业设计外文翻译在逆向工程中对适合曲线的数据点云的预处理.docx_第4页
第4页 / 共22页
逆向工程毕业设计外文翻译在逆向工程中对适合曲线的数据点云的预处理.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

逆向工程毕业设计外文翻译在逆向工程中对适合曲线的数据点云的预处理.docx

《逆向工程毕业设计外文翻译在逆向工程中对适合曲线的数据点云的预处理.docx》由会员分享,可在线阅读,更多相关《逆向工程毕业设计外文翻译在逆向工程中对适合曲线的数据点云的预处理.docx(22页珍藏版)》请在冰豆网上搜索。

逆向工程毕业设计外文翻译在逆向工程中对适合曲线的数据点云的预处理.docx

逆向工程毕业设计外文翻译在逆向工程中对适合曲线的数据点云的预处理

附录一

在逆向工程中对适合曲线的数据点云的预处理

逆向工程已经成为一种从实物通过CMM测量的数据点重建CAD模型的重要工具.在逆向工程中首要的问题是:

测量到的点具有不规律形式和不对等分布,很难用B-spline曲线拟合。

这篇论文中介绍了一种在逆向工程中用预先处理数据点来拟合曲线的方法。

适合B-spline形式之前来处理先前测量得到的数据点的方法已经得到了发展。

通过这种方法产生的新的数据点形式,适合建立光滑精确B-spline曲线的要求。

这种方法的整个的步骤包括:

切片、弧度分析、分割、回归、和再生。

在逆向工程中这种方法被实施和用于实践。

重建的结果证实了此方法与目前流行的商业CAD系统的结合力。

关键字:

拟合曲线;预先处理数据点。

逆向工程

1.介绍

随着计算机硬件的软件技术的发展,对促进产品发展的计算机辅助技术观念在工业领域已被广泛地接受通过新的CAD技术的发展,设计和制造之间的间隙已逐渐变得越来越密切。

在正常的自动化制造环境下操作顺序经常是通过用CAD系统创建的几何模型的产品设计开始,在几何模型的基础上,产生机器制造指令将原材料转化成最终产品然后结束。

由于意识到现代计算机辅助技术在产品发展和制造中的优势,因此在CAD系统着重要求创建物体的几何模型。

然而,在创建CAD模型之前,产品发展的物理模型和样本先被产生出来。

1.例如,在设计汽车主体控制面板时,设计者和艺术家关于控制板的构想到底是在什么样的基础上制造黏土模型。

2.没有最初的草图,确切的记录模型在哪里?

3.在制造中由于设计的改变,CAD模型不得不重新修改的部分哪里

在所有这些情形中。

物理模型或样本的建立是为了创建和建立CAD模型。

与这些常规的制造顺序相反,典型的逆向工程从测量现存的物理实体开始,这样推断出来的CAD模型可以更好的利用CAD技术的优势。

逆向工程经常可以细分为3个阶段:

电子数据获取,数据分割,和用CAD模型构建一个物理模型。

样本起先用CMM或激光扫描仪测量以得到以三维坐标形式存在的几何图案的信息。

然后,为了更进一步的处理,测量结果被分割成拓扑状。

就重建模型来说,每个小区域就代表一个简单的可以用数学方面知识描绘其简单外表的几何图案特征。

CAD模型重建区域的表面是把这些表面连接成完整的可以描述被测量部分或样本的模型。

然而,在实际测量方案中,存在物理样本或模型的几何图案信息不能被完全测量和准确重建一个好的CAD模型的情况。

一些表面测量的数据可能是不规律的,还有一些测量误差或者表面是不要求的。

如图1所示,测量物体的主要表面可能有这些特征:

由于制造的不精确引起的凹坑,凸起,或噪声点,因此,CMM探针不能获取一套完全的数据点来重建整个物体的表面。

图1一个实际测量情况中的一般的问题

在逆向工程中,现存实体的测量,可以通过接触式测量或非接触式测量技术来实现。

然而无论用什么技术,这里都有一系列获取数据的实际问题,例如,噪声和不完全数据。

如果没有简单的程序去校对这些数据点。

这些问题将引起令人不期望的CAD模型的重建问题。

为了正确和满意的重建CAD模型,这篇论文中介绍了一种先处理数据点去拟合曲线的有用和行之有效的方法,用这种方法,数据点被按指定的形式重新生成,并适合指定拟合B-spline曲线的形式,而没有先前提到的问题。

在拟合了所有曲线之后,模型的表面才可能完全和曲线结合起来。

2.B-spline曲线理论

通过含参数的方程,绝大多数外观基础上的CAD系统都表达了构造模型的要求,如Bezier曲线或B-spline曲线形式,最长用的是B-spline形式,在目前商业系统中,B-spline曲线是标准的代表自由曲线和外表的曲线。

B-spline曲线和Bezier曲线有许多共同的优势。

用可预测的普通方法来移动控制点影响曲线形状,使它们两者成了构建曲面较好的曲线形式。

这两种不同类型的曲线都具有控制点少,独立的对称轴和综合价值。

都表现出了凸凹性。

然而,在局部的控制曲线形状这方面,可能B-spline曲线表现出的优势超过了Bezier技术。

如增加控制点而没有增加曲线的度数的能力。

考虑到现实世界中应用的要求,在这篇论文中B-spline技术被用来代表曲线和曲面。

一条B-spline曲线设定了连接n+1个控点。

通过下面的列子给出了一条含参数的B-spline曲线:

对于B-spline曲线,这些变量参数的度数经常通过参数K控制,它对应控制点的数量。

一条B-spline曲线基本功能通过下面的表式来定义:

3.拟合

如果从现存的数据中测量一些数据点,拟合曲线不许经过数据点。

最新的拟合技术,用接近的算法规则,在迭代方法的基础上,一系列数据点形成了B-spline曲线。

假如一系列数据点,在一条不知道参数值的曲线P中,K从1到N决定一个准确加入位置或者是好的拟合曲线P是必要的。

为了解决这个问题,每个数据点的参数值必须被假定出来。

矢量的节点和曲线的度数也是要求的。

在实际应用中度数一般都是3,参数值的确定可以通过下面的方法:

 

如果给定参数值,反映这些参数分布的节点如下面的形式。

Fig.2.Curvefittingwithunequaldistributionofdatapoints.

4.适合B-Spline曲线的数据要求

为了生成一条光滑准确的B-Spline曲线,还要求一系列数据点能适合呈现出的B-Spline形式的曲线特征。

首先,数据必须有较好的排列顺序。

当应用程序为了使一系列数据点能适合-Spline曲线,这些数据点必须以指定的顺序读入。

如果数据点不是按顺序的,这将引起未预期的曲线或一条失去B-Spline曲线形状控制的曲线。

其次,均匀分布数据点对拟合曲线来说是比较好的。

在实际的测量中,一些因素如机器的颤抖,系统中的噪音,和被测量物体表面的粗糙,这都将影响测量的结果。

所有这些现象都将引起在经过问题点的曲线的局部颤抖。

因此,对于产生一个高质量的B-Spline曲线,光滑有序的点云数据是必须的。

获得均匀分布的数据点,可以提高拟合B-Spline曲线参数的结果。

就象在方程式(9)中数学方面所展示的那样,通过和数据点分布一致的参数UI决定的基本函数和数据点,确定了控制点。

如果数据是不均匀的,这些控点也会分布不均匀还将引起拟合曲线的不平滑。

正如上面所提及到的,在实际案例测量中

Fig.3.Curvefittingwithequaldistributionofdatapoints.

Fig.4.Theprocedureofdatapointspre-processing.

一个物体模型经常有一些诸如空洞,内凹和小范围的切片,这些都将阻止CMM探针获得均匀分布的数据点。

如果一条曲线不是用均匀分布的数据点拟合重建的,就像图2中所示,产生的曲线会和真实测量物体的形状不符。

图3说明了更光滑和更准确的重建可以通过一系列均匀分布的空间数据点获得,数据点预处理。

5预先处理的数据点

正如上面所述,为了达到使一系列数据点适合B-spline曲线的要求,在拟合曲线之前,对数据点进行预处理是非常重要和必须的。

在下面的描述中,将介绍有种对拟合曲线有用而且有效的的数据预处理办法,这种办法的构想是:

用绝对的或明确的形式将一系列测量结果设为不含参数的方程式,这些方程式必须满足曲率的连续性,对于一个飞机模型,一个明确的不含参数方程式的一般形式:

图示说明,一个总的逆向工程中预处理数据点的程序。

数据点的移动第一步是删除不需要和不规则的数据点。

通过CMM从物理模型和现存模型测量的原始数据点是离散形式的,当这些测量的点用图表示出来时,明显偏离原始曲线的数据点,可通过设计者的一般处理和可见的搜寻能被有选择的剔除掉。

此外,为进一步处理清晰的不连续的在形状上急转变化的点,可以很容易的把他们分开。

在逆向工程中,从测量点中产生一个CAD模型已经发展了很多种途径。

一个复杂的模型经常要通过将完整的模型细分成单独的简单模型来构建。

在一个CAD系统中,每一个单独的表面定义了一个简单的特性。

一个完整的的CAD模型就可以通过更进一步的修整,融合,整合获得,或者用其他的表面处理工具。

当一个设计者把从存在的物体中测量的一系列数据进行细分时,要求通过定义单独的简单表面来重新构建一个完整的模型。

因此,数据点的曲率分析被用来将细分的的数据点归成单独的小类。

为了提炼出再建的CAD模型,在这一步中,依据曲率推算和数据点分

析的结果,数据点被归为不同的类,如一个2维作标的曲线,曲线被定义如下:

如果数据用离散的形式表示出来,同一架飞机中任何三个不连续的点,这三点形成一平面和一个中心

a=(X1+X2)(X2-X1)(Y3-Y2)

b=(X2+X3)(X3-X2)(Y2-Y1)

c=(Y1-Y3)(Y2-Y1)(Y3-Y2)

d=2[(X2-X1)(Y3-Y2)-(X3-X2)(Y2-Y1)]

 

e=(Y1+Y2)(Y2-Y1)(X3-X2)

f=(Y2+Y3)(Y3-Y2)(X2-X1)

g=(X1-X3)(X2-X1)(X3-X2)

和,(X2,Y2)的曲率K可以定义为:

图6说明了一个例子,组成数据点的飞机轮廓的曲度用先前方法推算,数据点从0到0.333之间的变化决定了曲线的曲度,就像图7中所示。

这表明数据点中有一些半径为30的点。

然而,这些数据可以从原始数据中分离出来而形成一个简单的特性。

通过弧度分析,这一组数据点被分成了几类。

从外观上急剧变化的原始数据的点被分成了这一组组数据。

在分割完以后,单独的数据类被单独地回归为明确的不含参数的方程式。

然而一个好的有序的,接近空间的数据点可以从回归方程式中得出。

从而得到合适的拟合曲线。

新的数据点对于拟合简单的单独的没有内部约束的B-spline曲线是有效的。

这些能被用于更进一步的编辑和修改,如修饰和伸展。

通过联合单独曲线就可以构建出外观,设计者不遗余力地努力实现一个完整的CAD模型,从而形成设计意图。

此外,通过被测量数据和回归方程式的回归性操作,一些回归性的错误也被介绍出来,在下面的列子中,来讨论回归方程式的顺序,因为它显示出了和回归性错误有密切联系。

假设一系列现存的数据点,用不同顺序回归。

图8显示说明了通过r.m.s.方法推算的回归方程式和回归性错误之间的关系。

这数字显示了方程式顺序增加会引起r.m.s.错误的减少。

然而,在多数实例中,当用第5个回归方程式的时候,第5项的系数变成零第4项方程式的错误和第5项的错误是一样的了。

这就意味着设计者仅仅回归了第4个方程式的数据点。

在实际应用中,第4个方程式已经满足了工业应用中的CAD模型再建对曲度来连续的要求。

6.应用

为了提高先前提到的用预先处理过的数据拟合曲线的方法的有效性和灵活性。

一个应用的列子是先面图表中的步骤,一个MitutoyoBN706一致的测量仪器配合一个RenishawPH9接触式探针和SAS统计软件是常用来系统实施的工具,通过标准的CMM探针和测量软件,部分的表面测量就可以实现为了确定先前的方法在实际应用中的有用性,商用的CAD系统和

Pro/Engineer,经常结合使用。

Fig.10.执行系统组成的配置.

Fig.11.执行的物理模型.

在工具中,系统的各部分整体结构如图10所示。

首先经过筛选描述的曲线形状应用模型可以用CMM测量出来。

对于典型的对称几何物理实体,如图11所示,被在应用的例子中使用,一个对称实体的CAD模型可以很容易的被通过对称线的对称性映射出来。

因此,一些可选的具有对称性的曲线仅仅要求一半曲线的数据,然后另一半可以映射出来从而产生一条完整的曲线,测量结果如图12所示当测量的数据十分完整时,单个描述不同可选曲线的数据点被单独的处理。

在这个应用案列中,在这条曲线上获取144个点,作为一个预先处理数据点的例子来说明这条中间可选择曲线的加工处理,如图13(a).所示在数据分割步骤中,这些明显从数据点分类中脱离出来的不规则的点和明确的不连续的点被直接在预处理过程中剔除掉。

分割后,残留的数据点包括132个点,如图13(b)所示。

 

Fig.12.测量结果.

Fig.14.初始点决定的代表性曲线的主要曲率变化

Fig.15.通过中间点的方法平滑曲线.

 

Fig.13.代表曲线预处理重要数据点的步骤

为了分割数据点,描述曲线残留数据点的曲度可以被推算和在图14中绘制出来。

由于物理实体工具表面还没有定义,通过这些测量点决定的曲度可能极大的偏离原始曲线,以至很难达到曲线分割。

为了得到明确的弧度变化,在弧度推算之前被测量的数据点必须是通过中线得到的平滑的数据点。

用新的数据点推算的曲度结果,如图16所示,或许可以把曲线分割的很平滑,在考虑的物体表面重建计划和曲度发生了明显变化。

这些点被分割成了显示个别曲线特征的小组。

包括曲线顶部,侧面和切面。

如图13(c)所示

在分割完以后,个别的数据组被单独的回归到明确的不含参数的方程式中。

通过大致的分割,为了消除回归性错误,可以去掉刚开始的几个点和回归前数据点组结尾的每个点。

例如,在曲线顶部分割的点应该是第28到第128之间的点。

在方程式中,回归从第31到第115个点之间的数据点,可得到如下式子。

曲线顶部的数据点可以被用一个好的有序的预先决定的空间和均匀分布的曲线回归。

如图13(d).所示,通过CMM测量的预先处理的原始数据点的结果,允许适合回归数据点的光滑曲线。

在曲线上曲度趋于0的点被叫做节点。

在这些情形中,可以被用来重建复杂雕刻品的曲线特征,在这里它不仅仅是一个结束点了。

处理数据点来拟合分割成不同结束点的曲线。

为产生曲线外型,一个高的有序的回归方程式可以被用来回归数据点。

在CAD应用中,在曲线基础上构建模型的技术已广泛应用于工业。

沿着预先期望的方向,物体通常被分成几个可选部分。

通过可选的数据点,单个特性的空间曲线首先适合曲线。

通过融合用不同种类的表面,重新构建安排,如规则表面,镂空表面和模糊的表面,这样不同的表面可以被用期望的形状重新构建出来。

然后一个复杂的合成表面模型就可以通过连接这些表面来构建出来。

当整个预先处理数据过程完成后,一个单独的再生数据就可以通过IGES形式转移到商用CAD系统中。

通过拟合不同的在B-spline形式展现出来的数据点,被测量物体所有曲线特征可以被完整的创造出来。

如图Fig.13(e,f).所示,曲线特征不同,表面就可以用期望的形状重新构建出来。

最后,完整的CAD模型,通过联合不同表面就可以达到进一步的设计或操作或完成。

7.结论

对于开发新产品,构建几何模型已经是一个广泛应用于工业的技术。

逆向工程成了一个从测量到实体数据重建CAD模型的重要工具。

在逆向工程技术中,一个主要的难题是:

使不均匀分布的非常规的数据点适合B-spline曲线。

在这篇论文中描述了在逆向工程中对于适合去预先处理数据点的过程,在拟合曲线之前处理从实体得到的数据。

先前提议的方法已经得到了发展,然后,适合拟合光滑漂亮的B-spline曲线所要求的新数据被产生出来,这种方法的整个过程包括:

切片,曲度分析,分割,回归和再生。

这种方法在逆向工程中是实际应用的工具。

也是一种连接现行的重建物理实体几何模型的商用CAD系统的有效工具

逆向工程更广泛的解释还可能包括:

在某中程度上推断原始设计意图。

一个逆向工程构思体系,不仅仅是重建原始物体的完整的几何模型,而是还要获取原始设计意图。

通过使用上面建议的方法,为了产生单独特征曲线来重新构建一个完整的原始物体的CAD模型,设计者可能对数据进行重新编组来达到原始设计意图。

附录二

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小升初

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1