③P(μ-3σ<X≤μ+3σ)=0.997_4.
辨析感悟
1.条件概率与相互独立事件的概率
(1)若事件A,B相互独立,则P(B|A)=P(B).()
(2)P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(AB)表示事件A,B同时发生的概率,一定有P(AB)=P(A)·P(B).()
(3)(教材习题改编)袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是0.5.()
2.二项分布与正态分布
(4)在正态分布函数φμ,σ(x)=
中,μ是正态分布的期望值,σ是正态分布的标准差.()
(5)二项分布是一个概率分布列,是一个用公式P(X=k)=C
pk(1-p)n-k,k=0,1,2,…,n表示的概率分布列,它表示了n次独立重复试验中事件A发生次数的概率分布.()
(6)(2014·扬州调研改编)小王通过英语听力测试的概率是
,他连续测试3次,那么其中恰好第3次测试获得通过的概率是P=C
·
1·
3-1=
.()
[感悟·提升]
1.古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)=
=
,其中,在实际应用中P(B|A)=
是一种重要的求条件概率的方法.
2.P(A·B)=P(A)·P(B)只有在事件A、B相互独立时,公式才成立,此时P(B)=P(B|A),如
(1),
(2).
3.判断一个随机变量是否服从二项分布,要看两点:
一是是否为n次独立重复试验.在每次试验中事件A发生的概率是否均为p.
二是随机变量是否为在这n次独立重复试验中某事件发生的次数.且P(X=k)=C
pk(1-p)n-k表示在独立重复试验中,事件A恰好发生k次的概率.
考点一 条件概率
【例1】
(1)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于( ).
A.
B.
C.
D.
(2)如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,
用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,
则P(B|A)=________.
规律方法
(1)利用定义,求P(A)和P(AB),则P(B|A)=
.
(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),得P(B|A)=
.
【训练1】已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( ).
A.
B.
C.
D.
考点二 相互独立事件同时发生的概率
【例2】(2013·陕西卷改编)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中选3名歌手.
(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求“X≥2”的事件概率.
规律方法
(1)解答本题关键是把所求事件包含的各种情况找出来,从而把所求事件表示为几个事件的和事件.
(2)求相互独立事件同时发生的概率的方法主要有
①利用相互独立事件的概率乘法公式直接求解.
②正面计算较繁或难以入手时,可从其对立事件入手计算.
【训练2】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
与p,且乙投球2次均未命中的概率为
.
(1)求乙投球的命中率p;
(2)求甲投球2次,至少命中1次的概率.
规律方法
(1)求解本题关键是明确正态曲线关于x=2对称,且区间[0,4]也关于x=2对称.
(2)关于正态曲线在某个区间内取值的概率求法
①熟记P(μ-σ②充分利用正态曲线的对称性和曲线与x轴之间面积为1.
【训练3】若在本例中,条件改为“已知随机变量X~N(3,1),且P(2≤X≤4)=0.6826,”求P(X>4)的值.
考点四 独立重复试验与二项分布
【例4】某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为
.甲、乙、丙三位同学每人购买了一瓶该饮料.
(1)求甲中奖且乙、丙都没有中奖的概率;
(2)求中奖人数X的分布列.
规律方法
(1)独立重复试验是在同样的条件下重复地、各次之间相互独立地进行的一种试验,在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.
(2)求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后求概率.
【训练4】某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为
和p.
(1)若在任意时刻至少有一个系统不发生故障的概率为
,求p的值;
(2)设系统A在3次相互独立的检测中不发生故障的次数为随机变量X,求X的概率分布列及数学期望E(X).
小结
1.相互独立事件与互斥事件的区别
相互独立事件是指两个事件发生的概率互不影响,计算式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).
2.在n次独立重复试验中,事件A恰好发生k次可看做是C
个互斥事件的和,其中每一个事件都可看做是k个A事件与(n-k)个
事件同时发生,只是发生的次序不同,其发生的概率都是pk(1-p)n-k.因此n次独立重复试验中事件A恰好发生k次的概率为C
pk(1-p)n-k.
3.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线的对称性和曲线与x轴之间的面积为1.
易错辨析——对二项分布理解不准致误
【典例】一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是
.
(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;
(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列.
【自主体验】
(2013·辽宁卷)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(1)求张同学至少取到1道乙类题的概率;
(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是
,答对每道乙类题的概率都是
,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.
基础巩固题组
一、选择题
1.设随机变量X~B
,则P(X=3)的值是( ).
A.
B.
C.
D.
2.已知随机变量X服从正态分布N(0,σ2).若P(X>2)=0.023,则P(-2≤X≤2)=( ).
A.0.477B.0.628C.0.954D.0.977
3.(2014·湖州调研)国庆节放假,甲去北京旅游的概率为
,乙、丙去北京旅游的概率分别为
,
.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ).
A.
B.
C.
D.
4.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是被甲击中的概率为( ).
A.0.45B.0.6C.0.65D.0.75
5.(2013·湖北卷改编)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为p0.则p0的值为( ).
(参考数据:
若X~N(μ,σ2),有P(μ-σP(μ-2σA.0.9544B.0.6826C.0.9974D.0.9772
二、填空题
6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为
,则该队员每次罚球的命中率为________.
7.某次知识竞赛规则如下:
在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.
8.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.
三、解答题
9.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.
(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率;
(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.
10.某公交公司对某线路客源情况统计显示,公交车从每个停靠点出发后,乘客人数及频率如下表:
人数
0~6
7~12
13~18
19~24
25~30
31人及以上
频率
0.10
0.15
0.25
0.20
0.20
0.10
(1)从每个停靠点出发后,乘客人数不超过24人的概率约是多少?
(2)全线途经10个停靠点,若有2个以上(含2个)停靠点出发后乘客人数超过18人的概率大于0.9,公交公司就考虑在该线路增加一个班次,请问该线路需要增加班次吗?