光学玻璃的均匀性.docx

上传人:b****7 文档编号:9184055 上传时间:2023-02-03 格式:DOCX 页数:14 大小:1.37MB
下载 相关 举报
光学玻璃的均匀性.docx_第1页
第1页 / 共14页
光学玻璃的均匀性.docx_第2页
第2页 / 共14页
光学玻璃的均匀性.docx_第3页
第3页 / 共14页
光学玻璃的均匀性.docx_第4页
第4页 / 共14页
光学玻璃的均匀性.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

光学玻璃的均匀性.docx

《光学玻璃的均匀性.docx》由会员分享,可在线阅读,更多相关《光学玻璃的均匀性.docx(14页珍藏版)》请在冰豆网上搜索。

光学玻璃的均匀性.docx

光学玻璃的均匀性

技术资料

资料来源:

SCHOTT翻译:

袁晓曲

资料26:

光学玻璃的均匀性

0.简介

SCHOT提供的加工过的光学玻璃,其均匀性可高达H5级。

可实现的

均匀性主要取决于玻璃型号和尺寸。

大多数交付的光学玻璃的均匀性能达到H2级或更好。

N—BK7就是一种高均匀性的玻璃,可进行大量生产,尺寸大于300mm均匀性为H2甚至更好。

N-BK7的尺寸如果小于150mm大批量提供的产品甚至可以达到H5级。

1.均匀性定义

光学玻璃最重要的性质之一就是材料折射率的空间均匀性极好。

一般

而言,人们能够从玻璃均匀性中区分材质折射率的整体或大范围均匀性以及小范围的偏离。

条纹就是玻璃均匀性在空间上小范围的变化。

小范围变化的范围大约是0.1mm到2mm(条纹的更多信息见Tie25)。

但是,折射率空间上大范围的整体均匀性则覆盖了整块玻璃。

2.整体非均匀性的产生

整体非均匀性的产生有3个原因:

熔炼工艺:

光学玻璃采用连续熔炼工艺生产。

熔炼过程中化学组分的梯度会导致折射率的非均匀性。

梯度产生的原因是特殊组分的表面挥发和/或者与模具材料接触的部分熔化物发生了反应。

由于连续熔炼和浇铸过程中的工艺控制,观察到的折射率只是一个时间函数。

在不同时间从浇铸中得到的那些具有最高均匀性的玻璃,其折射率在时间上几乎不变。

由于热均衡导致的密度变化:

密度变化取决于玻璃的热历史。

在较高温度,实现均衡密度所用的时间小于较低的温度。

在转变温度Tg附近,不同温度实现的均衡密度是不同的。

接近Tg温度时,不受控制的玻璃冷却将产生折射率的空间不均匀性。

在光学玻璃生产中,连续的精密退火避免了这种不均匀性。

为了避免热梯度,玻璃应从稍高于Tg温度的地方开始缓慢冷却。

为了获得高均匀性,大尺寸光学玻璃的精密退火是一个非常花费时间的过程。

在冷却过程中由于温度梯度导致的永久性应力。

3.均匀性的级别

随着对折射率均匀性要求的不断增长,根据ISO标准10110第4部分[5]节,玻璃的折射率均匀性可分为5级。

单个部件的SCHOT均匀性

级别H1-H5包含在ISO的级别1到5中。

SCHOT使用ISO标准中的0

级和1级来描述变化公差。

变化公差是从一片到另一片的折射率变

化。

表1给出了均匀性级别的概要性描述。

ISO10110第4部分

均匀性级别

最大折射

率变化

SCHOTT均

匀性级别

实用范围

0

±50*10-6

S0

变化公差,单个切割玻璃的均匀性总是更好

1

±20*10-6

S1

变化公差,用于单个切割玻璃

±20*10-6

H1

用于单个切割玻璃

2

±5*10-6

H2

用于单个切割玻璃

3

±2*10-6

H3

用于单个切割玻璃,但不适用所有尺寸

4

±1*10-6

H4

用于单个切割玻璃,但不适用所有尺寸,取决于玻璃型号

5

±0,5*10-6

H5

用于单个切割玻璃,但不适用所有尺寸,取决于玻璃型号

表1:

均匀性级别

根据下列公司,光学元件内部的折射率差异会导致通过玻璃块的波阵

面的变形:

s二dn

飞是波阵面偏移,d是玻璃厚度,F是玻璃内最大和最小折射率的变化。

例如,一个平面波通过厚度为50mr的H2级平面玻璃时,最大变形为50mm*10*10-6二500nm。

同样厚度的H5级玻璃产生的最大波阵面变形是50nm

4.测试方法有两种方法可以测量光学玻璃的非均匀性:

积分法,采用干涉测量法测积分,最好是相位测量干涉测量法。

由于可以直接测量进入的波阵面的变形,这是最优选的方法。

匀性可以通过对玻璃样品内的光路积分进行评估。

因此,不能探测光束方向上折射率的线性梯度。

为了减少玻璃样品的表面不规则性,玻璃样品放臵于板(plate)上的两个夹层油(sandwichoil)之间,板接触浸入油(immersionoil),或者样品在不同的方向上进行抛光和测量,以避免表面影响。

这两种方法SCHOT都在使用。

统计法。

从待检测的玻璃板中切割几个分散的样品。

使用双缝干涉计检测这些样品的折射率差异。

SCHOT也使用这种方法,其解释见[6]。

5.DirectlOO型Fizeau干涉仪

美因茨的SCHOT使用蔡司的DirectlOO型Fizeau干涉仪测量均匀性,最大孔径为508m(20英寸)。

采用不同的干涉仪可能实现600mri的测量孔径,精确度小一点。

Direct1OO型的装备图解总貌见图1。

该装备包括一个He-N&激光源和一个大型准直仪,它把激光束转化为全孔径。

这种校准过的平行的光束通过一个部分反射的Fizeau板。

部分光线被Fizeau板反射。

余下的光线进入腔体,并首次通过样品。

过样品之后,在光线干涉来自记录干扰带的CC阵列上的Fizeau板的反射光之前,光线被一个平面镜反射,第二次通过样品、Fizeau板和准直仪。

Fizeau板和自准直仪镜由ZERODI制造。

干涉仪使用卡尔蔡司[1]的直接测量干涉测量法。

这种方法能够提供干涉图,并实时计算来自干涉带的波阵面。

单个干涉图的数据可以在2兆秒(mS内得到。

整个波阵面数据集在40兆秒(mS后得到。

因此,它可能在3分钟之内平均4000个波阵面数据集。

 

Fizeau板

校准系统

镜面

图1:

干涉仪装备图示

 

 

玻璃的折射率差异依赖于热光效应的温度。

因此,玻璃内部的温度梯

度影响测试精度。

特殊测试必须降低样品内的温度差异。

干涉仪室应

有空调。

干涉仪腔体被一个特殊的箱子(见图2)把它从干涉仪室分开。

该箱子的温度稳定性是-0,05°C,箱子周围的温度稳定性是_0,25°C使用特殊的运输系统把准备好的样品移进干涉仪腔体内。

图2:

左:

没有腔体的DIRECT1O0右:

从外部看的内空调室

6.均匀性测试方法

在均匀性测试中,必须避免样品表面的影响。

SCHOT有两种测试均匀

性的方法:

“油在板上的夹层法”和“样品抛光法”。

图3:

油在板上测量法的装备图

在“油在板上的夹层测量法”中,样品放臵在两块玻璃板之间(图3中的si和s2)。

这些玻璃板具有精确的抛光表面。

玻璃板使用浸入油

(Q)与样品相连,浸入油与样品的折射率一致。

使用这种方法,样

品(G)进行测量不需要抛光。

仅仅要求重叠表面的平直度为3⑴。

这种测量中,开始只单独测量没有样品(W1的油在板上的夹层,减去有样品(W2的油在板上的夹层的测量值。

结果就是样品的均匀性图。

浸入油非常精确的匹配样品折射率(衍

小于ix10-4),对这种方法的精度非常重要。

为了测量光学玻璃的多样性,使用两种不同折射率的浸入油混合物。

折射率从1.473到1.651的光学玻璃,可以使用“油在板上夹层法”进行测量。

图4:

抛光样品测量法

对于那些不能使用“油在板上夹层法”测量的光学玻璃,必须使用“抛光样品”法[3]。

这种方法中,样品必须两面抛光,获得合适的光学质量。

另外,在前表面和后表面之间,应有一些角度很小的楔形。

均匀性测量包括按顺序进行4个独立的测量(见图4)。

首先,有必要测量空腔。

然后,对样品进行3次测量。

样品从背面进行传输和反射测量,从前表面进行发射测量。

这4个测量按顺序联合在一起,能评估均匀性分布。

与“油在板上夹层法”相比,“抛光样品法”需要花费更多的时间和努力。

7.测量精度

如前所述,光学玻璃的均匀性使用干涉测量技术通过评估波阵面的偏

移进行测量。

因此,干涉仪的测量精度给定nm波阵面偏移(波峰到波

谷)

干涉仪的精度能够通过空腔的重复测量进行评估。

重复性存在的范围

是3-4nm波峰到波谷,这就是所谓的干涉仪的“噪音”。

波阵面测量的整体精度受温度均匀性、浸入油液体的匹配精度以及操

作(油在板上测量法的配臵,以及抛光法的样品准备)的影响。

油在板上测量法的标准偏移范围是+-10nm波阵面偏移(波峰到波

谷)。

+-10nm波阵面精度的现实意义是,测量均匀性级别H樂5*10-7)时,样

品需要至少10-20mm勺厚度。

测量的灵敏性随着样品厚度的增加而增

加。

8.检测证书和测量结果的解释

每测量一次均匀性,客户均可得到一个均匀性检测证书。

使用

DIRECT10进行的测量,检测证书包括一个被测样品的均匀性图。

这种彩色的编码均匀性图显示了在测量孔径内的折射率差异。

不同的颜

色显示不同的折射率值。

因此,颜色变化显示折射率变化,换句话说:

非均匀性。

在这种均匀性图中,均匀性作为波峰到波谷的差异给出。

图5显示了典型的均匀性分布色图和在色图中沿箭头方向的1D“高度”

剖面图

N-8K7pv-+-2i2*1(rj

n|mm|

图5:

2Dt匀匀性色图和沿箭头方向的1□剖面图

波阵面变形的形状(因此也是均匀性分布)能够被数学描述为一个独立像差条件集合的多项式函数。

这些条件包括下列系数,焦点的数量,散光,以及波阵面内部的慧差和球面像差。

预先从波阵面中减去活塞

和倾斜误差(pistonandtiltdeviations)。

SCHOTT用Zernike

多项式膨胀[2]进行波阵面分解。

一个给定的波阵面的Zernike多项式膨胀仅仅在波阵面显示圆形孔径的时候才有效。

在一定的运用中,知道Zernike系数非常重要,以便在光学配臵元件中模拟波阵面变形,因此SCHOT的圆形孔径均匀性测试证书包括

Zernike系数的信息。

图6显示了具有合适的主要像差的1D均匀性分布。

图的右边显示了3D

均匀性分布。

图6:

Zernike多项式膨胀的例子

对光学玻璃的大多数运用来说,能够在透镜设计中通过调整透镜的距

离进行再聚焦来补偿聚焦条件。

在大多数情况下,从整个波阵面中减

去聚焦条件后从波峰到波谷的均匀性远远低于初始值(见图7)

图7:

有聚焦像差和没有聚焦像差的N-BK7板

9.材料选择/建议从熔炼活动中选择均匀性材料有几种标准。

在熔炼过程中与时间相对应的折射率图用来评估生产的玻璃是否具有较高的均匀性。

如果折射率在时间上保持稳定,是获得的最好结果,这意味高着高均匀性玻璃应来自那些折射率图的斜率接近0的区域。

10.

选择高均匀性玻璃的另一个标准是条纹检测。

作为一个原则,具有非常好的整体均匀性的玻璃没有条纹。

图8a显示了没有条纹的N-BAK1玻璃块的均匀性测试,图8b显示了来自同一熔炉的带条纹的N-BAK1玻璃块的均匀性测试。

没有条纹的玻璃块的均匀性比有条纹的好2倍。

DIRECT10型干涉仪的空间解决能力太小不能使条纹本身可见。

图&条纹的含量作为均匀性玻璃的选择标准

不管玻璃是圆形或块状,大多数均匀性分布显示为旋转对称。

因此,如果通过切割和打磨来降低大直径玻璃的直径,其均匀性增加。

图9显示了圆形N—BK7部件的均匀性和直径函数。

在直径为260m时,

均匀性为H2,250m时H3,210m时H4,170m时H5总之,可以观察到均匀性随着直径的减少而增加。

b)

图9:

均匀性与直径函数

在玻璃盘边缘附近会发现最大的均匀性差异。

朝模具壁方向均匀性降低的原因可以在浇铸工艺中找到。

浇铸中的玻璃流形成特殊的对流方式。

坩埚的填充方式是从底部到顶部,从中心到外部。

填充坩埚所需的时间内,折射率的轻微变化会对后来的折射率分布产生影响。

这种现象尤其对大块的生产产生影响。

耐火材料墙壁材料的额外反应能够损害外部玻璃的均匀性。

图10显示了直径为840mm的N-BK7盘的均匀性测量结果。

在464m的

孔径内,获得的均匀性级别是H4

typ&:

UK/

anti.no.:

朗U9U

BK/

moltno.:

8CQ53S

optnm:

dim(mtn]:

B4D.OO

blc»ckno.:

-

orderpus.:

Thicltn.^iim|:

.20

231mm

-231mm

test云pEii.w[min];46337humogiinel^f;An~±U.J93-10*f

图10.直径为840m的N—BK7盘的均匀性

浇铸时间内熔融玻璃折射率的轻微变化对均匀性测量的影响,在边/

边方向上比在顶部/底部方向上的大。

图11显示了N—BK7玻璃块在顶部/底部和边/边方向上的均匀性分布。

在边/边方向上的均匀性小于顶部/底部方向上的均匀性。

这一点对选择高质量的棱镜运用材料非

常重要。

图11:

均匀性与视角方向有关

获得的均匀性也与玻璃型号和生产工艺关系密切。

能生产的具有良好

光学均匀性的最普通的大直径咼产量的光学玻璃是N-BK7。

图12显示了280次N-BK7匀匀性测量的频率分布图,这些玻璃直径不同,没有采取得到高均匀性的特殊措施。

可以看到直径范围在300m内,所有

测量的玻璃块有接近90%达到H2级。

直径等于或小于150m的N-BK7玻璃块,有83%甚至达到H5级。

图12.N-BK7测量的均匀性分布

10.结论

总的说来,光学玻璃的整体折射率均匀性好于一20*10-6(包括IS010110第4部分级别1)。

大部分加工过的光学玻璃能够按H2或更好的均匀性级别交货。

SCHOTT提供的光学玻璃均匀性级别能够高至H5级。

可获得的均匀性依赖于玻璃型号和尺寸。

对于特殊运用,SCHO他能提供在2个垂直方向上具有良好均匀性的产品。

能制作的大尺寸又具有高均匀性的最普通的玻璃是N—BK711.参考文献

[1]KtichelM.:

ThenewZEISSInterferometer.72ProceedingsofSPIFsIntSymposiumonOpticalandOptoelectronicAppliedScienceandEngineering.SanDiego,paper1332.1990

[2]Malacara,D;Servin,M.;Malacara,Z.:

Interferogramanalysisforopticaltesting,MarcelDekkerInc.,1998

[3]Schwider.J.:

Homogeneitytestingbyphasesamplinginterferametiy.Appl.Opt.24.pp.3059-30611,1985

[4]SCHOTTOpticalGlassPocketCatalogue

[5]ISO/DIS101ID-part4:

Preparationofdrawingsforopticalelementsandsystems;Materialimperfections-Inhomogeneityandstriae,1994

[6]SCHOTTTechnicalInformationTNEft:

"Statisticalinterferometry'

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1