第十一讲一元一次方程应用题分类.docx
《第十一讲一元一次方程应用题分类.docx》由会员分享,可在线阅读,更多相关《第十一讲一元一次方程应用题分类.docx(12页珍藏版)》请在冰豆网上搜索。
第十一讲一元一次方程应用题分类
第十一讲一元一次方程应用题(找出等量关系)
一、列一元一次方程解应用题的一般步骤
(1)审题:
弄清题意.
(2)找出等量关系:
找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:
设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:
解所列的方程,求出未知数的值.(5)检验,写答案:
检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.
1、数字问题
要搞清楚数的表示方法:
一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:
100a+10b+c。
例1、若三个连续的偶数和为18,求这三个数。
例2、一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:
原两位数+36=对调后新两位数
例3、有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
分析:
然后抓住数字间或新数、原数之间的关系找等量关系列方程.
2、日历中的规律:
横行相邻两数相差____竖行相邻两数相差___。
例1、如果今天是星期三,那么一年(365天)以后的今天是星期___________
例2、在日历表中,用一个正方形任意圈出2x2个数,则它们的和一定能被___________整除。
A3B4C5D6
例3、如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?
3、等积变形问题
常用等量关系为:
①形状面积变了,周长没变;②原料体积=成品体积。
例1、用直径为4cm的圆钢,锻造一个重0.62kg的零件毛坯,如果这种钢每立方厘米重7.8g,应截圆钢多长?
例2.用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为
内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?
(结果保留整数
)
4、和、差、倍、分问题:
倍数关系:
通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
多少关系:
通过关键词语“多、少、和、差、不足、剩余……”来体现。
(1)劳力调配问题:
这类问题要搞清人数的变化.
例1.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?
例2.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
(2)配套问题:
例1、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)
例2.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
分析:
列表法。
每人每天
人数
数量
大齿轮
16个
x人
16x
小齿轮
10个
人
等量关系:
小齿轮数量的2倍=大齿轮数量的3倍
解:
设分别安排x名、
名工人加工大、小齿轮
答:
略.
(3)分配问题:
例1.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
例2.三个正整数的比为1:
2:
4,它们的和是84,那么这三个数中最大的数是几?
(比例分配问题常用等量关系:
各部分之和=总量。
)
(4)年龄问题:
例1、甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是多少岁?
例2、小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄。
5、工程问题
工程问题中的三个量及其关系为:
工作总量=工作效率×工作时间
经常在题目中未给出工作总量时,设工作总量为单位1。
例1.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
分析设工程总量为单位1,等量关系为:
甲完成工作量+乙完成工作量=工作总量。
解:
设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(
+
)×3+
=1,
...................
例2、在西部大开发中,基础建设优先发展,甲、乙两队共同承包了一段长6500米的高速公路工程,两队分别从两端施工相向前进,甲队平均每天可完成480米,乙队平均每天比甲队多完成220米,乙队比甲队晚一天开工,乙队开工几天后两队完成全部任务?
6、①打折销售问题
(1)销售问题中常出现的量有:
进价、售价、标价、利润等
(2)基本关系式:
①利润=售价—进价;②售价=标价×折数;③利润率=利润/进价。
由①②可得出④利润=标价×折数-进价。
由③④可得出⑤利润率=。
②市场经济问题
(1)商品利润=商品售价-商品成本价
(2)商品利润率=
×100%
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
例1、一件衣服标价是200元,现打7折销售。
问:
买这件衣服需要多少钱?
若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?
利润是多少?
例2、某商场售货员同时卖出两件上衣,每件都以135元售出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次售货员是赔了还是赚了?
7、行程问题。
(行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点)
要掌握行程中的基本关系:
路程=速度×时间。
①相遇问题(相向而行),这类问题的相等关系是:
甲走的路程+乙走的路程=全路程
②追及问题(同向而行),这类问题的等量关系是:
同时不同地:
甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程
同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程
解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
(1)分析:
相遇问题,画图表示为:
等量关系是:
慢车走的路程+快车走的路程=480公里。
解:
设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480
解这个方程,230x=390
∴x=1
答:
略.
(2)分析:
相背而行,画图表示为:
等量关系是:
两车所走的路程和+480公里=600公里。
解:
设x小时后两车相距600公里,
由题意得,(140+90)x+480=600解这个方程,230x=120
∴x=
答:
略.
(3)分析:
等量关系为:
快车所走路程-慢车所走路程+480公里=600公里。
解:
设x小时后两车相距600公里,由题意得,(140-90)x+480=600 50x=120
∴x=2.4
答:
略.
(4)分析:
追及问题,画图表示为:
等量关系为:
快车的路程=慢车走的路程+480公里。
解:
设x小时后快车追上慢车。
由题意得,140x=90x+480
解这个方程,50x=480 ∴x=9.6
答:
略.
(5)分析:
追及问题,等量关系为:
快车的路程=慢车走的路程+480公里。
解:
设快车开出x小时后追上慢车。
由题意得,140x=90(x+1)+480
50x=570 解得,x=11.4
1答:
略.
③环形跑道上的相遇和追及问题:
同地反向而行的等量关系是两人走的路程和=一圈的路程;同地同向而行的等量关系是两人所走的路程差=一圈的路程。
航行问题:
顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
例:
一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
1、A、B两地相距150千米。
一辆汽车以每小时50千米的速度从A地出发,另一辆汽车以每小时40千米的速度从B地出发,两车同时出发,相向而行,问经过几小时,两车相距30千米?
2、甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?
3、一架飞机飞行在两个城市之间,顺风要2小时45分,逆风要3小时,已知风速是20千米/小时,则两城市间的距离为多少?
4、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?
5、火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求列车的长度。
8、银行储蓄问题。
⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税
⑵利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)
利润=
×100%利息=本金×利率×期数
注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。
本息和=本金+_____=本金+_____×_____×_____=(1+_____×_____)×本金(不考虑利息税)
本息和=本金+_____=本金+_____×_____×_____×(1-_____)(考虑利息税)
例9.某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7元,求银行半年期的年利率是多少?
(不计利息税)
分析:
等量关系:
本息和=本金×(1+利率)
解:
设半年期的实际利率为x,
250(1+x)=252.7,
x=0.0108
所以年利率为0.0108×2=0.0216
1、张先生于1998年7月8日买入1998年中国工商银行发行的5年期国库券20000元,若在2003年7月8日可获得利息数为2790元,则这种国库券的年利率是多少?
2、小明的爸爸前年存了年利率为2.25%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买以一只价值576元的CD机,问小明爸爸前年存了多少钱?
3、教育储蓄年利率为1.98%,免征利息税,某企业发行的债券月利率为2.15‰,但要征收20%的利息税,为获取更大回报,投资者应悬着哪一种储蓄呢?
某人存入28000元,一年到期后可以多收益多少元?
4、肖青的妈妈前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少?
(精确到0.01%)
5、某人将20000元钱分成两部分,按两种不同方式存入银行,其中10000元按活期方式存一年,另10000元按定期存一年,一年后共取回21044元,又已知定期一年存款约利率为0.63%,求活期存款月利率是多少?
6、将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
7、将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,
≈3.14).
8、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.
9、某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?
应交电费是多少元?