形状阻力公式大全形阻公式.docx

上传人:b****8 文档编号:9159801 上传时间:2023-02-03 格式:DOCX 页数:14 大小:77.64KB
下载 相关 举报
形状阻力公式大全形阻公式.docx_第1页
第1页 / 共14页
形状阻力公式大全形阻公式.docx_第2页
第2页 / 共14页
形状阻力公式大全形阻公式.docx_第3页
第3页 / 共14页
形状阻力公式大全形阻公式.docx_第4页
第4页 / 共14页
形状阻力公式大全形阻公式.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

形状阻力公式大全形阻公式.docx

《形状阻力公式大全形阻公式.docx》由会员分享,可在线阅读,更多相关《形状阻力公式大全形阻公式.docx(14页珍藏版)》请在冰豆网上搜索。

形状阻力公式大全形阻公式.docx

形状阻力公式大全形阻公式

Flowinvalvesandfittings

ResistancecoefficientK,valvesandfittingsheadlossandflowvelocity|PipeequivalentlengthL/D

Pressuredroporheadlossisproportionaltothevelocityinvalvesorfittings.Forthemostengineeringpracticesitcanbeassumedthatpressuredroporheadlossduetoflowoffluidsinturbulentrangethroughvalvesandfittingsisproportionaltosquareofvelocity.

Toavoidexpensivetestingofeveryvalvesandeveryfittingsthatareinstalledonpipeline,theexperimentaldataareused.ForthatpurposeresistancecoefficientK,equivalentlengthL/DandflowcoefficientCv,Kvareused.Thesevaluesareavailablefromdifferentsourcesliketablesanddiagramsfromdifferentauthorsandfromvalvesmanufacturersaswell.

Kineticenergy,whichisrepresentedasheadduetovelocityisgeneratedfromstaticheadandincreaseordecreaseinvelocitydirectlyisproportionalwithstaticheadlossorgain."Velocityhead"is:

whereis:

hL-headloss;v-velocity;gn-accelerationofgravity;

Thenumberofvelocityheadslostduetoresistanceofvalvesandfittingsis:

whereis:

hL-headloss;K-resistancecoefficient;v-velocity;gn-accelerationofgravity;

Theheadlossduetoresistanceinvalvesandfittingsarealwaysassociatedwiththediameteronwhichvelocityoccurs.

TheresistancecoefficientKisconsideredtobeconstantforanydefinedvalvesorfittingsinallflowconditions,astheheadlossduetofrictionisminorcomparedtotheheadlossduetochangeindirectionofflow,obstructionsandsuddenorgradualchangesincrosssectionandshapeofflow.

HeadlossduetofrictioninstraightpipeisexpressedbytheDarcyequation:

whereis:

hL-headloss;f-frictionfactor;L-length;D-internaldiameter;v-velocity;gn-accelerationofgravity;

Itfollowsthat:

whereis:

K-resistancecoefficient;f-frictionfactor;L-lengt;D-internaldiameter;

TheratioL/Disequivalentlengthinpipediametersofstraightpipethatwillcausethesamepressuredroporheadlossasthevalvesorfittingsunderthesameflowconditions.AstheresistancecoefficientisKisconstanttheequivalentlengthL/Dwillvaryinverselywiththechangeinfrictionfactorfordifferentflowconditions.

Forgeometricallysimilarvalvesandfittings,theresistancecoefficientwouldbeconstant.Actuallytherearealwayssmallerorbiggergeometricalnonsimilarityinvalvesandfittingsofdifferentnominalsize,sotheresistancecoefficientisnotconstant.TheresistancecoefficientKforagiventypeofvalvesorfittings,tendstovarywithsizeasdoesfrictionfactorforstraightcleancommercialsteelpipeatthesameflowconditions.

Someresistancesinpipinglikesuddenorgradualcontractionsandenlargements,aswellaspipeentrancesorexistsaregeometricallysimilar.ThereforetheresistancecoefficientorequivalentlengthL/Disfortheseitemsindependentofsize.

ThevaluesforresistancecoefficientorequivalentlengthL/Darealwaysassociatedwithinternalpipediameterwheretheresistanceisoccurring.

IftheresistancecoefficientorequivalentlengthL/Dshouldbeusedfordifferentinternalpipediameterthanthediameterforwhichexistingvaluescanbefoundfollowingrelationshipcanbeused:

whereis:

K-resistancecoefficient;D-internaldiameter;

wheresubscript"a"definesKanddwiththereferencetointernalpipediameter,andsubscript"b"definesKanddwiththereferencetotheinternaldiameterforwhichvaluesofKcanbefoundintablesordiagrams.

ThisequationcanalsobeusedifthepipingsystemhasmorethanonesizeofvalvesandfittingstoexpresstheresistancecoefficientorequivalentlengthL/Dintermsofonesize.

ResistancecoefficientKcalculatorforvalvesandfittingscanbeused.

ResistancecoefficientKforinternaldiametersuddenandgradualcontractionandenlargement

Usingmomentum,continuityandBernoulliequationtheresistanceduetosuddenenlargementsmaybeexpressedas:

andtheresistancefactorduetosuddencontractionas:

whereis:

K1-resistancecoefficient;d1-internaldiameter(smaller);d2-internaldiameter(larger);

Usingβasdiameterratio,bothequationcanbeexpressedas:

whereis:

K1-resistancecoefficient;β-diameterratiod1/d2;

Inordertoexpresstheresistancecoefficientintermsoflargerpipediameter,followingrelationshouldbeused:

whereis:

K1-resistancecoefficientbasedonsmallerinternaldiameter;K2-resistancecoefficientbasedonlargerinternaldiameter;β-diameterratiod1/d2;

Iftheenlargementisnotsuddenbutgradual,orifangleofgradualenlargementisdifferentfrom180O,GibsoncoefficientCecanbeusedfordifferentangleofdivergenceasfollows:

Inotherwords,ifangleofdivergenceisbiggerthan45O,theresistancecoefficientisequaltooneforsuddenenlargement.

ForgradualcontractiontheresistancecoefficientonthesamebasisbasedonCranetestdata,contractioncoefficientCccanbeusedfordifferentanglesofconvergence,asfollows:

Usingaboveexpressionsforenlargementandcontractioncoefficient,resistancecoefficientcanbecalculatedas:

Forgradualenlargement:

whereis:

Ce-coefficientofenlargement;K1-resistancecoefficientbasedonsmallerinternaldiameter;β-diameterratiod1/d2;θ-enlargementangle;

Forgradualcontraction:

whereis:

Cc-coefficientofcontraction;K1-resistancecoefficientbasedonsmallerinternaldiameter;β-diameterratiod1/d2;θ-enlargementangle;

Forresistancecoefficientbasedonthelargepipediameterexpression:

shouldbeused,withaboveequations.

whereis:

K1-resistancecoefficientbasedonsmallerinternaldiameter;K2-resistancecoefficientbasedonlargerinternaldiameter;β-diameterratiod1/d2;

Equationsforgradualenlargementandcontractioncanbeusedforresistancecoefficientcalculationforreducedborestraight-throughvalveslikeballvalvesandgatevalves.Thetotalresistancecoefficientforthistypeofballandgatevalvesisthesummationofresistancecoefficientforgradualcontractionandgradualenlargement.

YoucancalculateresistancecoefficientusingresistancecoefficientKandequivalentlengthl/dcalculator.

FlowcoefficientCv,pressuredrop,controlvalveflowrate

Selectingthecorrectvalvesizeforagivenapplicationrequiresknowledgeofprocessconditionsthatthevalvewillactuallyseeinservice.Intheindustryofcontrolvalvesitispracticetouseflowcoefficientandflowcharacteristics.

IntheUKandintheUSAcoefficientCvisusedanditisdefinedasflowrateofwateringpmat60OFthatcreatespressuredropof1psiacrossthevalve.Basicequationforvalvesizingforliquidserviceis:

whereis:

Cv-flowcoefficient[gpm];q-flowrate[gpm];Δp-pressuredrop[bar];S-specificgravity(relativedensity)[-];

ToaidinestablishinguniformmeasurementofliquidflowcoefficientsCv,standardizedtestingfacilitybyFluidControlInstitute(FCI)areusedbymanufacturers.Theeffectofviscosityoffluidsotherthanwatershouldbeconsideredwhenselectingthevalve,asincreasedviscosityoffluidisreducingthevalvecapacity.

AnothercoefficientKvisusedinsomecountries,particularlyinEuropeandisdefinedasflowrateofwaterinm3/hthatcreatespressuredropof1kg/cm2acrossthevalve(1kg/cm2isequalto0.980665bar).

Controlvalvesizingisbasedonthecalculationofflowcoefficientforgivenpressuredropandflowrate.LiquidflowcapacityofavalveinmetricunitscanbeconvertedtoCvas:

whereis:

Cv-flowcoefficient[gpm];qm-flowrate[l/m];ρ-density[kg/m3];Δp-pressuredrop[bar];

Also,liquidflowcapacityofavalvecanbeconvertedtoKvas:

whereis:

Kv-flowcharacteristic[m3/h];qh-flowrate[m3/h];S-specificgravity(relativedensity)[-];Δp-pressuredrop[bar];

AboveequationsareusedinflowcoefficientCv,pressuredropandcontrolvalveflowratecalculator.

Flashingandcavitation,vaporpressureatvalvevenacontracta

Flashingorcavitationinsideavalvecanhaveasignificantinfluenceonvalvecapacity.Flashingandcavitationcanreducetheflowthroughvalveinmanyliquidservices.Also,damagecanbemadetothevalveaswellastothepipingsystem.Theeffectisrepresentedbythechangefromliquidtovaporstateoffluid,resultinginthevelocityincreasedownstreamfromthevalve.

Asliquidpassesthroughtherestrictionareainsidethevalveflowstreamiscontracted.Thesmallestcrosssectionareaofstreamisjustdownstreamoftheactualphysicalrestrictionatapointcalledvenacontracta.Atthatpointthevelocityisatitsmaximumandpressureattheminimum.

Asthefluidexitsthevalve,awayfromvenacontracta,velocitydecreaseandpressureincrease,sothecriticalpointforflashingandcavitationisatthepointwherethepressureissmallestwhichisinvenacontracta.Ifpressureatvenacontractadropsbellowsthevaporpressureofthefluid,duetoincreasedvelocityatthispoint,bubbleswillformintheflowstream.

Ifpressuredownstreamofthevenacontractaincreaseabovethevaporpressure,bubbleswillcollapseorimplodeproducingcavitation.Cavitationreleasesenergyandproducesanoise.Ifcavitationoccursclosetosolidsurfaces,theenergyreleasedgraduallywearsthematerialleavingtheroughsurface.Cavitationcanalsodamagethedownstreampipeline,ifatthatplacethepressurerisesabovethevaporpressureandbubblescollapse.

Chockedflowvalvepressuredropandcavitationinhighpressurerecoveryvalve

Formationofbubblesinthevalveresultingofflashing

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1