卫星定位系统的发展与应用.docx

上传人:b****7 文档编号:9157398 上传时间:2023-02-03 格式:DOCX 页数:20 大小:158.78KB
下载 相关 举报
卫星定位系统的发展与应用.docx_第1页
第1页 / 共20页
卫星定位系统的发展与应用.docx_第2页
第2页 / 共20页
卫星定位系统的发展与应用.docx_第3页
第3页 / 共20页
卫星定位系统的发展与应用.docx_第4页
第4页 / 共20页
卫星定位系统的发展与应用.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

卫星定位系统的发展与应用.docx

《卫星定位系统的发展与应用.docx》由会员分享,可在线阅读,更多相关《卫星定位系统的发展与应用.docx(20页珍藏版)》请在冰豆网上搜索。

卫星定位系统的发展与应用.docx

卫星定位系统的发展与应用

卫星定位系统原理与发展应用前景

广东省韶关学院廖伟迅

1、子午卫星导航系统(NNS$

该系统又称多普勒卫星定位系统,它是58年底由美国海军武器实验室开始研制,于64年建成的海军导航卫星系统”(NavyNavigationSatelliteSystem)。

这是人类历史上诞生的第一代卫星导航系统。

1957年10月前苏联成功发射了第一颗人造卫星后,美国霍普金斯大学应用物理实验室的吉尔博士和魏分巴哈博士对卫星遥测信号的多普勒频移产生了浓厚的兴趣。

经研究他们认为:

利用卫星遥测信号的多普勒效应可对卫星精确定轨;而该实验室的克什纳博士和麦克卢尔博士则认为已知卫星轨道,利用卫星信号的

多普勒效应可确定观测点的位置。

霍普金斯大学应用物理实验室研究人员的工作,为多普勒卫星定位系统的诞生奠定了坚实的基础。

而当时美国海军正在寻求一种可以对北极星潜艇中的惯性导航系统进行间断精确修正方法,于是美国军方

便积极资助霍普金斯大学应用物理实验室开展进一步的深入研究。

1958年12月

在克什纳博士的领导下开展了三项研究工作:

①研制卫星;②建立地球重力场模

型以便卫星的精确定轨和准确预报卫星的空间位置;③研制多普勒接收机。

经过众人的努力子午卫星导航系统于1964年1月正式建成并投入军方使用,直至1967年7月该系统才由军方解密供民间使用。

此后用户数量迅速增长,最多达9.5万户,而军方用户最多时只有650个,不足总数的1%,可见因生产的需要民间用户远远大于军方。

1.1子午卫星导航系统的组成

(1)卫星星座:

子午卫星星座,由六颗独立轨道的极轨卫星组成。

在设计上要求卫星的轨道的偏心率为零,轨道倾角i=90°;卫星运行周期为T=107m;卫星高度约为H=1075km;按理论上的设计,六颗卫星应当均匀分布在相互间隔为30度轨道平面上。

但由于早期卫星入轨精度不高,各卫星周期、倾角、偏心率都存在不同程度的误差,

故各卫星轨道进动的大小和方向也都不尽相图1子午卫星星座

同,这样经过一段时间后各卫星轨道间的间距就变得疏密不一。

因而地面可观测卫星的时间分布就变得更加没有规律,中纬度

地区的用户平均1.5小时左右可以观测到一颗卫星,有时在高纬上空可出现多颗卫星造成信号的互相干扰(此时必须将信噪比差的卫星关闭避免干扰);但在低

纬度地区最不利时要等待10小时才能观测到卫星。

(2)地面系统:

地面设有4个卫星跟踪站;1个计算中心;1个控制中心;2个注入站;1个天文台(海军天文台)。

地面控制系统中设立了四个卫星跟踪站,它们分别位于加利福尼亚州的穆古角、明尼苏达州、夏威夷、缅因州。

因为地面跟踪站的精确坐标是已知的,当子午卫星通过跟踪站上空时可以观测记录各卫星信号的多普勒频移,并将测到的数

据传送给计算中心。

计算中心设在加州的穆古角,计算中心根据各跟踪站最近36小时的观测资料计算各卫星的轨道,并外推预报16小时的卫星位置,然后按一定的编码格式写成导航电文传送到注入站。

地面的2个注入站分别位于穆古角和明尼苏达州,注入站接收并存储由计算中心送来的导航电文,每12小时左右

向卫星注入1次导航电文。

在地面系统中美国海军天文台主要负责卫星以及地面计时系统的时间对比,求出卫星钟差改正数和钟频改正数。

地面控制中心设在穆古角,主要负责协调和管理整个地面控制系统的工作。

1.2子午卫星导航系统的技术特点

(1)定轨精度:

在卫星跟踪技术条件一定,使用相同的地球重力场模型且摄动修正精度一定的情况下,卫星定轨精度主要取决于地面跟踪站的数量及其分布,一般来说跟踪站越多、分布越广计算出的卫星轨道就越精确。

广播星历:

是由美国本土的4个卫星跟踪站的观测数据解算的。

因测站数量及分布范围都小,故卫星定轨精度不高。

广播星历所预报的卫星位置的切向误差±17m;径向误差土26m;法向误差土8m。

精密星历:

是由美国国防制图局根据全球20个卫星跟踪站的观测资料解算的,因测站数量多且分布范围广故卫星定轨精度较高。

精密星历所预报的卫星位置精度为土2m。

(2)卫星性能:

限于早期火箭的运载能力,子午卫星的重量、体积都很小。

星体直径约为50公分,卫星重量为45~73公斤。

如此轻巧的卫星如何保持姿态稳定,使卫星天线始终指向地面在当时是一个技术难点(使用卫星姿态发动机无法解决燃料的长期供应,这显然是不现实的)。

美国科学家巧妙地利用重力梯度稳定,使卫星的天线始终指向地面。

他们在卫星天线的指向端接了一条30米长

的稳定杆,杆端配有一个1.4公斤的重锤,在重力的作用下重锤始终把长杆和天线拉向下方,实现卫星的姿态稳定。

卫星还装有4块太阳能电池板,给卫星提供所需的电能。

(3)卫星信号:

卫星配有一台频率相当稳定的钟,由此产生一个频率为4.9996MHz基准钟频信号,该信号再经过倍频器分别倍频30和80倍后,形成两个频率为149.988MHz和399.968MHz的标准信号供卫星使用。

(4)定位精度:

多普勒定位仪利用广播星历的单机定位精度一般为10m左

右,若观测100次卫星通过后的测量数据平差解算后,可获得精度为3~5m地心坐标;如果利用精密星历观测40次卫星通过的测量数据平差解算后,可获得精度为0.5~1m地心坐标;为了消除公共误差提高定位精度,可利用2台以上的多普勒定位仪进行联测,一般联测的定位精度为0.5m。

1.3子午卫星导航系统的定位原理

如图2所示,子午卫星的定位原理是通过测定同一颗卫星不同间隔时段其信号的多普勒效应,从而确定卫星在各时段相对观察者的视向速度和视向位移,再利用卫星导航电文所给定的t1、t2、t3、t4…时刻的卫星空间坐标,结合对应的视向位移则可解算出测站空间坐标P(X,Y,Z)。

多普勒定位的几

何原理是:

卫星在tl、t2、t3、t4…点上的坐标是已知的,而任意两个相邻已知点到待定点P的距离差(即视向位移)已通过多普勒效应测定。

在数学上我们知道,一个动点P到两个定点的距离差为一定值时,该动点P则构成一个旋转双曲面,这两个定点就是该双曲面的焦点。

于是以卫星所在的tl、t2、t3、t4…任意

两个相邻已知定点作焦点,未知点P作动点均构成对应的特定旋转双曲面。

其中两个双曲面相交为一曲线(P点必在该曲线上),曲线与第三个双曲面相交于两点(其中一点必为P点),第四个双曲面必与其中一点相交一一该点就是待定的P(X、丫、Z)点。

因此要解算P点的三维坐标,必须对同一颗卫星要有四个积分间隔时段的观测,得出卫星在四段时间间隔的视向位移。

从而获得四个旋转双曲面,它们的公共交点就是待定点P(X、丫Z)。

1.4子午卫星导航系统的不足之处

(1)一次定位所需时间过长,无法满足高速用户的需要。

这一缺点是由多

普勒定位方法的本身决定的。

因为采用距离差交会的各个旋转双曲面的焦点是由同一颗卫星在飞行的过程中逐步形成的。

为了保证观测精度,这些焦点的距离不能太小。

在一次测量定位的过程中,要求卫星对于测点的起、止观测角度B必须在90°左右(参见图2)。

因此一次定位一般需要连续观测一颗卫星通过的时间约为15〜18分钟。

这样势必带来一系列的问题:

①该系统只能作为船舶等低动态用户进行辅助导航(例如惯性导航间断修正),无法用于飞机、导弹、卫星等高动态用户的实时定位。

②在一次定位的过程中(15〜18分钟)导航载体还在运动,其间导航载体的空间位置可能变化10公里左右。

于是解算时必须根据导航载体的运动速度将观测值归算至同一时刻,显然这会影响导航定位精度。

③为了减少一次定位所需时间,只能采用低轨道的短周期多普勒卫星。

而低轨卫星由于受到地球不规则重力场的引力摄动和大气阻力摄动的影响很大,低轨卫星精确

定轨的测算难度很大且精度不高。

(2)卫星出现时间间隔过长,无法满足连续导航的需要。

由于子午卫星系

统没有采用频分、码分、时分等多路接收技术,要求在同一时刻多普勒接收机只能接收一颗子午卫星的信号。

但是接收机本身无法识别和屏蔽不同的子午卫星的信号,于是在同一天区如果出现两颗以上的子午卫星,就会导致定位信号的相互

干扰。

尤其是对于极轨卫星,为了防止在高纬度地区的视场中同时出现多颗卫星造成信号干扰的可能性,子午卫星的数量一般不宜超过6颗。

因卫星数量少导致中低纬度地面出现可观测卫星的时间间隔过长,中纬度地区的用户平均1.5小时

左右可以观测到一颗卫星。

而考虑到轨道进动的不规则漂移导致轨道间隔分布的

不均匀性因素后,在低纬度地区最不利时要等待10小时才能观测到卫星,这样该系统就很难满足用户连续导航的需要。

尽管如此,有时在高纬上空还是可出现多颗卫星造成信号互相干扰的现象,此时用户只能通过地面控制中心将信噪比差的卫星信号关闭以避免信号的相互干扰。

限于当时的技术条件,子午卫星系统没有采用频分、码分、时分等多路接收技术,确定了该系统不能成为连续导航系统。

(3)子午卫星导航系统的定位精度偏低。

这是该系统的致命缺陷,究其原

因主要有三个方面:

①卫星轨道低,受到地球不规则重力场的引力摄动和大气阻力摄动的影响很大,低轨卫星精确定轨的测算难度很大且精度不高。

由于卫星引力摄动和阻力摄动计算不准导致的定位误差可达1〜2米。

②卫星信号频率较低受电离层影响大,这是因为电离层是电磁波的弥散介质,对不同频率(f)的信

号传播速度影响很大。

在电离层延时改正公式中略去了频率的高次项(1/f2)2

频率越低导致的误差就越大,在地磁赤道附近太阳活动的中等年份,由此产生的定位误差大于1米,在太阳活动大年误差就更大。

③子午卫星的卫星钟频不够稳定,由于观测时间过长而此间钟频不稳定导致的钟漂d(△f)引起的定位误差可达0.8〜1米。

由于上述种种原因,纵使子午卫星导航系统刚服役不久,就迫使美国国防部不得不着手研究第二代的卫星导航系统一一全球定位系统(GPS。

2、全球定位系统(GPS

该系统的全称是:

卫星测时测距导航/全球定位系统(NavigationSatellite

TimingandRanging/GlobalPositioningSystem)。

1973年12月,美国国防部批准陆、海、空三军联合研制第二代的卫星导航系统一一全球定位系统(GPS。

该系统是以卫星为基础的无线电导航系统,具有全能性(陆地、海洋、航空、航天)、全球性、全天候、连续性、实时性的导航、定位和定时等多种功能。

能为各类静止或高速运动的用户迅速提供精密的瞬间三维空间坐标、速度矢量和精确授时等多种服务。

GPS^划经历了方案论证(1974〜1978年),系统论证(1979〜1987年),试验生产(1988〜1993年)三个阶段,总投资300亿美元。

整个系统分为卫星星座、地面监测控制系统和用户设备三大部分。

论证阶段发射了11颗BlockI型GPS实验卫星(设计使用寿命为5年);在试验生产阶段发射了28颗BlockU型和BlocknA型GPS工作卫星(第二代卫星的设计使用寿命为7.5年);第三代改善型GPS卫星BlocknR和Block川型GPS工作卫星从90年代末开始发射计划发射20颗,以逐步取代第二代GPS工作卫星,改善全球定位系统。

2.1全球定位系统(GPS的组成

(1)卫星星座:

如图3所示,全球定位系统的空间卫星星座,由分布在六

个独立轨道的24颗GPS卫星组成(其中包括3颗备用卫星),平均每个轨道上分布4颗卫星,各轨道升交点的赤经相差60°。

卫星轨道倾角i=55°;卫星运行周期T=11h58m(恒星时12小时);卫星高度H=20200km;卫星通过天顶附近时可观测时间为5小时,在地球表面任何地方任何时刻高度角15度以上的可观

测卫星至少有4颗,平均有6颗,最多达11颗。

(2)地面系统:

地面设有5个卫星监测跟踪站;1个主控站;3个信息注入站(分布情况如图4所示)。

5个监测站分别位于夏威夷、科罗拉多、阿松森、迭哥伽西亚、卡瓦加兰,主要负责监测卫星的轨道数据、大气数据以及卫星工作状态。

通过主控站的遥控指令监测站自动采集各种数据:

对可见GPS卫星每6分钟进行一次伪距测量和多普勒积分观测、采集气象要素等数据,每15分钟平滑一次观测数据。

所有观

测资料经计算机初处理后储存和传送到主控站,用以确定卫星的精确轨道。

主控

站设在美国科罗拉多州的一个军事基地的山洞里。

主控站主要负责协调和管理地面监控系统,根据各监测站资料,推算预报各卫星的星历、钟差和大气修正参数编制导航电文;对监测站的钟差、偏轨或失效卫星实行调控和调配。

并将导航电

文、指令传送到注入站。

3个注入站分别位于阿松森、迭哥伽西亚、卡瓦加兰一—赤道带附近的美国海外空军基地。

注入站主要任务是:

将主控站推算和编制的卫星星历、导航电

文、控制指令注入相应的卫星的存储系统,并监测GPS卫星

o监控站

科罗拉多

图4——GPS地面监控系统的分布

注入信息的正确性。

2.2全球定位系统的技术特点

(1)定轨精度:

目前的GPS卫星的跟踪技术条件,以及地球重力场模型的

球阶函数的引力摄动修正等等精确定轨的推算技术手段,都比70年代优胜高明

得多,因此卫星定轨精度也比过去高得多。

广播星历:

是由美国本土以及海外军事基地上的5个卫星监测站的观测数据解算的。

因测站数量少,故卫星定轨精度不高。

广播星历所预报的卫星位置的切向误差土5m;径向误差土3m;法向误差土3m。

精密星历:

是由美国国防制图局根据全球20多个卫星跟踪站的观测资料解算的,因测站数量多且分布范围广故卫星定轨精度较广播星历高一个数量级。

得指出的是,由国际GPS地球动力学服务组织(IGS)所测算预报精密星历比美国军方测定的精密星历的精度要高得多,卫星位置精度可达土3厘米。

(2)卫星性能:

GPS1星直径1.5米;重量为843.68公斤(包括310公斤燃料);GPS卫星通过12根螺旋阵列天线发射张角约为30度的电磁波束垂直指向地面。

GPS卫星采用陀螺仪与姿态发动机构成的三轴稳定系统实现姿态稳定,从而使天线始终指向地面。

卫星还装有8块太阳能电池翼板(7.2m2),三组15A的镍镉蓄电池为卫星提供所需的电能。

(3)卫星信号:

卫星配有4台频率相当稳定(量时精度为10-13秒)的原子钟(2台铯钟,2台铷钟),由此产生一个频率为:

10.23MHz的基准钟频信号。

该信号经过倍频器降低10倍的频率后,成为频率为1.023MHz测距粗码(C/A码)的信号频率;基准钟频信号的频率10.23MHz,直接成为测距精码(P码)的信号频率;基准钟频信号经过倍频器降低204600倍的频率后,成为频率为50MHz数据码(卫星星历、导航电文的编码)的信号频率;基准钟频信号再经过倍频器倍频150倍和120倍频后,分别形成频率为1575.42MHz(L1)与1227.60MHz

(L2)载波信号。

测距用的码频信号控制着移位寄存器的触发端,从而产生与之频率一致的伪随机码(测距码),测距码与数据码模二相加后再调制到L1L2载波信号上通过卫星天线阵列发送出去。

值得指出的是:

无论是测距码的波长还是载

波信号的波长,都是测量GPS卫星到观测点距离的物理媒体,它们的频率越高波长越短所测量的距离精度就越高,定位精度也就越高。

另外C/A码除了用于

测距外,它还用于识别锁定卫星和解调导航电文以及捕获P码。

(4)定位精度:

利用伪随距码(测距码)的信号单机测量,理论上按照目前测距码的对齐精度约为码波长的1/100计算,测距粗码(C/A码)的测距精度约为土3m;而测距精码(P码)的测距精度约为土0.3m。

为了消除公共误差提高定位精度,可利用2台以上的载波相位GPS定位仪实行联测定位,对于载波信号单频机的相对定位精度可达:

±(5mm+2ppmxD)其中D为两台仪器的相对距离;对于载波信号双频机,它能有效的消除电离层延时误差,其相对定位精度可达:

±(1mm+1ppmxD);全球定位技术不但精度高,而且定位速度快,可以满足飞机、导弹、火箭、卫星等高速运动载体的导航定位的需要。

2.3全球定位系统的定位原理

GPS定位的几何原理并不复杂,它是利用测距交会的原理确定测点位置的。

如图5所示,GPS卫星任何瞬间的坐标位置都是已知的。

一颗GPS

卫星(Sn)信号传播到接收机的时间只能决定该卫星到接收机(P)的距离(Dn),但并不能确定接收机相对于卫星的方向,在三维空间中,GPS接收机的可能位置构成一个以Sn为中心以Dn为半径球面(称为定位球);当测到两颗卫星的距离时,接收机的可能位置被确定于两个球面相交构成的圆上;当得到第三颗卫星的距离后,第三个定位球面与该圆相交得到两个可能的点;第四颗卫星确定的定位球便交出接收机的准确位置。

因此,如果接收机能

够同时得到四颗GPS卫星的测距信号,就可以进行瞬间定位;当接收到信号的卫星数目多于四颗时,可以优选四颗卫星计算位置,或以信噪比最高的卫星数据作为平差标准与其他多颗卫星数据进行平差计算,以消除公共误差提高定位精度。

如果不考虑测量距离的误差修正,整个定位过程是:

测量站星几何距离Dn

通过导航电文提供的卫星坐标S(Xs,Ys,Zs)利用定位球方程式:

Dn=._(Xs-Xp)2(Ys-Yp)2(Zs-Zp)2

求解4个定位球相交的公共点P(Xp,Yp,Zp)。

按GPS定位测量的技术手段分类,可分为伪随机码相位测量与载波相位测量两类。

由于篇幅限制这里只讨论伪随机码相位测量原理:

简而言之伪随机码相

位测量时,GPS接收机利用码分多址技术与码相关锁相放大技术,同时对4颗以

上卫星的测距信号进行伪距(站星真空距离)测定,再通过对伪距的多项修正后的站星几何距离解算测站坐标。

伪码测量的具体步骤为:

①接收机将本机产生C/A码与卫星发射C/A码模

二和,求自相关系数R(t):

②当自相关系数R(t)=-1/N(有相位差码序不齐)时,延时器将本机码元相位后移,直至R(t)=1(码序对齐)时锁定信号,并解读导航电文。

③接收机根据本机信号的延时量(△t)计算GPS卫星到接收机伪距(D'=C△t)。

④再对伪距(D')经过对流层延时改正、电离层延时改正、钟差钟漂改正等多项修正后,成为近似的几何距离(D),连同导航电文的卫星坐标S(Xs,Ys,Zs)代入定位球方程解算测点坐标P(Xp,Yp,Zp)。

按GPS定位方法分类可分:

1绝对定位:

在未知点上用GPS定位仪(单机)测定站星距离,从而独立解算测点WGS-84坐标的过程。

2相对定位:

在一定距离内,用两台以上GPS定位仪同时测定站星距离,通过求差的方法解算测点间基线向量的过程。

3静态定位:

在定位过程中,GPS定位接收机始终处于静止接收状态的定位方法。

4动态定位:

在定位过程中,GPS定位接收机始终处于运动接收状态的定位方法。

2.4美国对GPS用户的限制性政策

由于GPS定位技术与美国的国防现代化发展密切相关,因而美国从自身的安全利益出发,限制非特许用户利用GPS定位精度。

GPS系统除在设计方面采取了许多保密性措施外,还对GPS用户实施SA与A-S限制性政策,具体做法有:

1对不同的GPS用户提供不同的服务方式:

GPS系统在信号设计方面就区分了两种精度不同的定位服务方式,即标准定位服务方式(SPS)和精密定位服务方式(PPS)。

标准定位服务方式(SPS)它通过美国军方已经公开的卫星识别码(C/A码)解调广播星历的导航电文,进行定位测量的,其单点定位精度约为20〜40mo

精密定位服务方式(PPS)是美国军方或者美国同盟国的特许用户使用的,其单点定位精度约为2〜4m。

使用这种服务方式一定要事先知道加密码(W码)和精码(P码)的编码结构。

否则便无法解调锁定P码进而解读精密星历,实施精密测距。

因此W码与P码对于非特许用户是绝对保密的。

2选择性可用(SA政策一一对(SPS服务实施干扰:

为了进一步降低标准定位服务方式(SPS)的定位精度,以保障美国政府的利益与安全,对标准定位服务的卫星信号实施S技术和&技术的人为干扰。

S技术一一将钟频信号加入高频抖动使C/A码波长不稳定。

&技术一一将广播星历的卫星轨道参数加入人为误差,降低定位精度。

在SA政策的影响下,SPS服务的垂直定位精度降为土150m,水平定位精度降为土100m。

科学家利用GPS差分技术,可以明显削弱SA政策导致的系统性误差的影响。

但对于使用精密定位服务(PPS)的特许用户,贝U可以通过密匙自动消除SA影响。

SA政策1991年7月1日实施,因印影响美国商业利益,于2000年5月2日取消SA政策。

3反电子欺骗技术(A-S)――对P码实施加密:

尽管P码的码长是一个非

常惊人的天文数字(码长为2.35X1014比特)至今无法破译,但是美国军方还是担心一旦P码被破译,在战时敌方会利用P码调制一个错误的导航信息,诱骗特许用户的GPS接收机错锁信号一一导致错误导航。

为了防止这种电子欺骗,美国军方将在必要时引入机密码(W码),并通过P码与W码的模二相加转换为丫码,即对P码实施加密保护:

-

P®W=Y

由于W码对非特许用户是严格保密的,所以非特许用户将无法应用破密的P码进行精密定位和实施上述电子欺骗。

该系统是82年底由前苏联开始承建,期间因苏联解体,几经周折最后由俄罗斯于96年建成全球导航定位系统(GlobalNavigationSatelliteSystem—GLONASS)。

该系统与美国的全球定位系统同属于第二代卫星定位系统。

图6—GLONASS卫星星座

3.1全球导航定位系统的组成

(1)卫星星座:

如图6所示,全球导航定位系统的空间卫星星座,由分布在三个独立椭圆轨道的24颗(GLONASS)卫星组成(另加1颗备用卫星),平均每个轨道上分布8颗卫星,各轨道升交点的赤经相差120°;轨道偏心率e=0.01;卫星轨道倾角i=64.8°;卫星运行周期T=11h15m(恒星时11.28小时);卫星高度H=19100km;卫星设计的使用寿命为4.5年,直至1995年卫星星座布成,经过数据加载、调整和检验,已于1996年1月18日整个系统正式运转。

(2)地面系统:

地面控制站组(GCS)设有1个系统控制中心(在莫斯科区的Golitsyno-2),1个指令跟踪站(CTS),整个跟踪网络分布于俄罗斯境内;

CTS跟踪遥测着所有GLONASS可视卫星,对其进行测距数据的采集和处理,并向各卫星发送控制指令和导航信息。

在GCS内装有激光测距设备对测距数据

作周期修正,为此所有的GLONASS卫星上都装有激光反射镜。

3.2全球导航定位系统的技术特点

(1)卫星信号:

每颗GLONASS卫星配有铯原子钟,以便为所有星载设备提供高稳定的时标信号。

GLONASS卫星同样向地面发射两种载波信号,L1载波信号的频率为1602~1616MHz;L2载波信号的频率为1246~1256MHz;其中L1载波信号为民用,L2载波信号为军用。

GLONASS卫星之间的识别方法采用频分复用制(FDMA),L1载波信号的频道间隔为0.5625MHz,L2载波信号的频道间隔为0.4375MHz。

GLONASS卫星测距粗码(C/A码)的码频0.511MHz码长为511比特,重复周

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 文学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1