上拉和下拉电阻TTL和CMOS讲解.docx

上传人:b****7 文档编号:9080000 上传时间:2023-02-03 格式:DOCX 页数:17 大小:27KB
下载 相关 举报
上拉和下拉电阻TTL和CMOS讲解.docx_第1页
第1页 / 共17页
上拉和下拉电阻TTL和CMOS讲解.docx_第2页
第2页 / 共17页
上拉和下拉电阻TTL和CMOS讲解.docx_第3页
第3页 / 共17页
上拉和下拉电阻TTL和CMOS讲解.docx_第4页
第4页 / 共17页
上拉和下拉电阻TTL和CMOS讲解.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

上拉和下拉电阻TTL和CMOS讲解.docx

《上拉和下拉电阻TTL和CMOS讲解.docx》由会员分享,可在线阅读,更多相关《上拉和下拉电阻TTL和CMOS讲解.docx(17页珍藏版)》请在冰豆网上搜索。

上拉和下拉电阻TTL和CMOS讲解.docx

上拉和下拉电阻TTL和CMOS讲解

关于电路的那些常识性概念

本文引用地址:

作者:

时间:

2016-03-08来源:

电子产品世界

一.TTL

  TTL集成电路的主要型式为晶体管-晶体管逻辑门(transistor-transistor logic gate),TTL大部分都采用5V电源。

  1.输出高电平Uoh和输出低电平Uol

  Uoh≥2.4V,Uol≤0.4V

  2.输入高电平和输入低电平

  Uih≥2.0V,Uil≤0.8V

二.CMOS

  CMOS电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。

CMOS电路的优点是噪声容限较宽,静态功耗很小。

  1.输出高电平Uoh和输出低电平Uol

  Uoh≈VCC,Uol≈GND

  2.输入高电平Uoh和输入低电平Uol

  Uih≥0.7VCC,Uil≤0.2VCC (VCC为电源电压,GND为地)

  从上面可以看出:

  在同样5V电源电压情况下,COMS电路可以直接驱动TTL,因为CMOS的输出高电平大于2.0V,输出低电平小于0.8V;而TTL电路则不能直接驱动CMOS电路,TTL的输出高电平为大于2.4V,如果落在2.4V~3.5V之间,则CMOS电路就不能检测到高电平,低电平小于0.4V满足要求,所以在TTL电路驱动COMS电路时需要加上拉电阻。

如果出现不同电压电源的情况,也可以通过上面的方法进行判断。

  如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT(74系列的输入输出在下面有介绍)的芯片,因为3.3V CMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。

三.74系列简介

  74系列可以说是我们平时接触的最多的芯片,74系列中分为很多种,而我们平时用得最多的应该是以下几种:

74LS,74HC,74HCT这三种,这三种系列在电平方面的区别如下:

  输入电平 输出电平

  74LS TTL电平 TTL电平

  74HC COMS电平 COMS电平

  74HCT TTL电平 COMS电平

  ————————————————————————————

TTL和CMOS电平

  1、TTL电平(什么是TTL电平):

  输出高电平>2.4V,输出低电平<0.4V。

在室温下,一般输出高电平是3.5V,输出低电平是0.2V。

最小输入高电平和低电平:

输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

  2、CMOS电平:

  1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。

而且具有很宽的噪声容限。

  3、电平转换电路:

  因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:

就是用两个电阻对电平分压,没有什么高深的东西。

  4、OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。

否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。

  5、TTL和COMS电路比较:

  1)TTL电路是电流控制器件,而CMOS电路是电压控制器件。

  2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。

COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。

COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。

  3)COMS电路的锁定效应:

  COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。

这种效应就是锁定效应。

当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。

  防御措施:

 1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。

  2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。

  3)在VDD和外电源之间加限流电阻,即使有大的电流也不让它进去。

  4)当系统由几个电源分别供电时,开关要按下列顺序:

开启时,先开启COMS路得电 源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。

  6、COMS电路的使用注意事项

  1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。

所以,不用的管脚不要悬空,要接上拉电阻或者下拉电阻,给它一个恒定的电平。

  2)输入端接低内阻的信号源时,要在输入端和信号源之间要串联限流电阻,使输入的电流限制在1mA之内。

  3)当接长信号传输线时,在COMS电路端接匹配电阻。

  4)当输入端接大电容时,应该在输入端和电容间接保护电阻。

电阻值为R=V0/1mA.V0是外界电容上的电压。

  5)COMS的输入电流超过1mA,就有可能烧坏COMS。

  7、TTL门电路中输入端负载特性(输入端带电阻特殊情况的处理):

  1)悬空时相当于输入端接高电平。

因为这时可以看作是输入端接一个无穷大的电阻。

  2)在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平。

因为由TTL门电路的输入端负载特性可知,只有在输入端接的串联电阻小于910欧 时,它输入来的低电平信号才能被门电路识别出来,串联电阻再大的话输入端就一直呈现高电平。

这个一定要注意。

COMS门电路就不用考虑这些了。

  8、TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD门,它的输出就叫做开漏输出。

OC门在截止时有漏电流输出,那就是漏电流,为什么有漏电流呢?

那是因为当三极管截止的时候,它的基极电流约等于0,但是并不是真正的为0,经过三极管的集电极的电流也就不是真正的 0,而是约0。

而这个就是漏电流。

  开漏输出:

OC门的输出就是开漏输出;OD门的输出也是开漏输出。

它可以吸收很大的电流,但是不能向外输出的电流。

所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。

OD门一般作为输出缓冲/驱动器、电平转换器以及满足吸收大负载电流的需要。

  9、什么叫做图腾柱,它与开漏电路有什么区别?

  TTL集成电路中,输出有接上拉三极管的输出叫做图腾柱输出,没有的叫做OC门。

因为TTL就是一个三级关,图腾柱也就是两个三级管推挽相连。

所以推挽就是图腾。

一般图腾式输出,高电平400UA,低电平8MA

  ————————————————————————

  CMOS 器件不用的输入端必须连到高电平或低电平, 这是因为 CMOS 是高输入阻抗器件, 理想状态是没有输入电流的. 如果不用的输入引脚悬空, 很容易感应到干扰信号, 影响芯片的逻辑运行, 甚至静电积累永久性的击穿这个输入端, 造成芯片失效.

  另外, 只有 4000 系列的 CMOS 器件可以工作在15伏电源下, 74HC, 74HCT 等都只能工作在 5伏电源下, 现在已经有工作在 3伏和 2.5伏电源下的 CMOS 逻辑电路芯片了.

  CMOS电平和TTL电平:

  CMOS逻辑电平范围比较大,范围在3~15V,比如4000系列当5V供电时,输出在4.6以上为高电平,输出在0.05V以下为低电平。

输入在3.5V以上为高电平,输入在1.5V以下为低电平。

  而对于TTL芯片,供电范围在0~5V,常见都是5V,如74系列5V供电,输出在2.7V以上为高电平,输出在 0.5V以下为低电平,输入在2V以上为高电平,在0.8V以下为低电平。

因此,CMOS电路与 TTL电路就有一个电平转换的问题,使两者电平域值能匹配。

有关逻辑电平的一些概念 :

  要了解逻辑电平的内容,首先要知道以下几个概念的含义:

  1:

输入高电平(Vih):

保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。

  2:

输入低电平(Vil):

保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。

  3:

输出高电平(Voh):

保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。

  4:

输出低电平(Vol):

保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。

  5:

 阀值电平(Vt):

数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。

它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输 出,则必须要求输入高电平> Vih,输入低电平

  对于一般的逻辑电平,以上参数的关系如下:

  Voh > Vih > Vt > Vil > Vol

  6:

Ioh:

逻辑门输出为高电平时的负载电流(为拉电流)。

  7:

Iol:

逻辑门输出为低电平时的负载电流(为灌电流)。

  8:

Iih:

逻辑门输入为高电平时的电流(为灌电流)。

  9:

Iil:

逻辑门输入为低电平时的电流(为拉电流)。

  门电路输出极在集成单元内不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。

开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开路(OD)、发射极开路(OE),使用时应审查是否接上拉电阻(OC、OD门)或下拉电阻(OE门),以及电阻阻值是否合适。

对于集电极开路(OC)门,其上拉电阻阻值RL应满足下面条件:

  

(1):

RL < (VCC-Voh)/(n*Ioh+m*Iih)

  

(2):

RL > (VCC-Vol)/(Iol+m*Iil)

  其中n:

线与的开路门数;m:

被驱动的输入端数。

  10:

常用的逻辑电平

  ·逻辑电平:

有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。

  ·其中TTL和CMOS的逻辑电平按典型电压可分为四类:

5V系列(5V TTL和5V CMOS)、3.3V系列,2.5V系列和1.8V系列。

  ·5V TTL和5V CMOS逻辑电平是通用的逻辑电平。

  ·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。

  ·低电压的逻辑电平还有2.5V和1.8V两种。

  ·ECL/PECL和LVDS是差分输入输出。

  ·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。

  ——————————————————————————

OC门

又称集电极开路(漏极开路)与非门门电路,OpenCollector(Open Drain)。

  为什么引入OC门?

  实际使用中,有时需要两个或两个以上与非门的输出端连接在同一条导线上,将这些与非门上的数据(状态电平)用同一条导线输送出去。

因此,需要一种新的与非门电路--OC门来实现“线与逻辑”。

  OC门主要用于3个方面:

  1、实现与或非逻辑,用做电平转换,用做驱动器。

由于OC门电路的输出管的集电极悬空,使用时需外接一个上拉电阻Rp到电源VCC。

OC门使用上拉电阻以输出高电平,此外为了加大输出引脚的驱动能力,上拉电阻阻值的选择原则,从降低功耗及芯片的灌电流能力考虑应当足够大;从确保足够的驱动电流考虑应当足够小。

  2、线与逻辑,即两个输出端(包括两个以上)直接互连就可以实现“AND”的逻辑功能。

在总线传输等实际应用中需要多个门的输出端并联连接使用,而一般TTL门输出端并不能直接并接使用,否则这些门的输出管之间由于低阻抗形成很大的短路电流(灌电流),而烧坏器件。

在硬件上,可用OC门或三态门(ST门)来实现。

 用OC门实现线与,应同时在输出端口应加一个上拉电阻。

  3、三态门(ST门)主要用在应用于多个门输出共享数据总线,为避免多个门输出同时占用数据总线,这些门的使能信号(EN)中只允许有一个为有效电平(如高电平),由于三态门的输出是推拉式的低阻输出,且不需接上拉(负载)电阻,所以开关速度比OC门快,常用三态门作为输出缓冲器。

  ————————————————————————

什么是OC、OD?

  集电极开路门(集电极开路 OC 或漏极开路 OD)

  Open-Drain是漏极开路输出的意思,相当于集电极开路(Open-Collector)输出,即TTL中的集电极开路(OC)输出。

一般用于线或、线与,也有的用于电流驱动。

  Open-Drain是对MOS管而言,Open-Collector是对双极型管而言,在用法上没啥区别。

  开漏形式的电路有以下几个特点:

  a. 利用外部电路的驱动能力,减少IC内部的驱动。

 或驱动比芯片电源电压高的负载.

  b.可以将多个开漏输出的Pin,连接到一条线上。

通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。

这也是I2C,SMBus等总线判断总线占用状态的原理。

如果作为图腾输出必须接上拉电阻。

接容性负载时,下降延是芯片内的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度慢。

如果要求速度高电阻选择要小,功耗会大。

所以负载电阻的选择要兼顾功耗和速度。

  c. 可以利用改变上拉电源的电压,改变传输电平。

例如加上上拉电阻就可以提供TTL/CMOS电平输出等。

  d. 开漏Pin不连接外部的上拉电阻,则只能输出低电平。

一般来说,开漏是用来连接不同电平的器件,匹配电平用的。

  正常的CMOS输出级是上、下两个管子,把上面的管子去掉就是OPEN-DRAIN了。

这种输出的主要目的有两个:

电平转换和线与。

  由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。

这样你就可以进行任意电平的转换了。

  线与功能主要用于有多个电路对同一信号进行拉低操作的场合,如果本电路不想拉低,就输出高电平,因为OPEN-DRAIN上面的管子被拿掉,高电平是靠外接的上拉电阻实现的。

(而正常的CMOS输出级,如果出现一个输出为高另外一个为低时,等于电源短路。

  OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。

因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。

所以如果对延时有要求,则建议用下降沿输出。

带你理解上拉电阻与下拉电阻

本文引用地址:

作者:

时间:

2016-03-10来源:

网络

  上拉电阻与下拉电阻用在什么场合?

  答:

用在数字电路中,存在高低电平的场合。

  上拉电阻与下拉电阻怎么接线?

  上拉电阻:

电阻一端接VCC,一端接逻辑电平接入引脚(如单片机引脚)

  下拉电阻:

电阻一端接GND,一端接逻辑电平接入引脚(如单片机引脚)

    

 

  如上图,R13和R14,一端接到了3.3V,一端通过J17连接到单片机引脚,这两个电阻就是上拉电阻。

    

 

  如上图,R18的一端连接到了GND,一端连接到了单片机的引脚(只不过是串了一个电阻后连接到了单片机引脚)。

所以这个就是下拉电阻。

  上拉电阻和下拉电阻有什么用?

  提高驱动能力:

  例如,用单片机输出高电平,但由于后续电路的影响,输出的高电平不高,就是达不到VCC,影响电路工作。

所以要接上拉电阻。

下拉电阻情况相反,让单片机引脚输出低电平,结果由于后续电路影响输出的低电平达不到GND,所以接个下拉电阻。

  在单片机引脚电平不定的时候,让后面有一个稳定的电平:

  例如上面接下拉电阻的情况下,在单片机刚上电的时候,电平是不定的,还有就是如果你连接的单片机在上电以后,单片机引脚是输入引脚而不是输出引脚,那这时候的单片机电平也是不定的,R18的作用就是如果前面的单片机引脚电平不定的话,强制让电平保持在低电平。

  再这么解释一下吧,如果IE_DATA那个地方,不连接任何引脚,那么由于R18的下拉作用,IE_DATA就是低电平,所以三极管就不会导通。

什么是上拉和下拉电阻、作用及选型

作者:

时间:

2007-09-03来源:

  上拉电阻是指:

将某电位点采用电阻与电源VDD相连的电阻。

比如,LM339比较器的输出端在输出高电平时,输出端是悬空的(集电极输出),采用上拉电阻可以将电源电压通过该电阻向负载输出电流,而输出端低电平时,输出端对地短接。

下拉电阻就是在某电位点用电阻与地相连的电阻。

如果某电位点有下拉和上拉电阻就组成了分压电路,此时,电阻又叫分压电阻。

作用

  1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

  2、OC门电路必须加上拉电阻,以提高输出的高电平值。

  3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

  4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

  5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

  6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

  7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:

  1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

  2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

  3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

  对下拉电阻也有类似道理

数字电路中上拉电阻和下拉电阻作用和选用选择

本文引用地址:

作者:

时间:

2015-11-02来源:

网络

  文章内容为数字电路中上拉电阻和下拉电阻作用和选用选择,希望对大家有帮助。

  上拉电阻:

  1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

  2、OC门电路必须加上拉电阻,才能使用。

  3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

  4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

  5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

  6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

  7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

  上拉电阻阻值的选择原则包括:

  1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

  2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

  3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑

  以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理

  对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:

  1.驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

  2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

  3.高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。

  4.频率特性。

以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。

上拉电阻的设定应考虑电路在这方面的需求。

  下拉电阻的设定的原则和上拉电阻是一样的。

  OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。

  选上拉电阻时:

  500uAx8.4K=4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。

如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。

  当输出高电平时,忽略管子的漏电流,两输入口需200uA

  200uAx15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。

选10K可用。

COMS门的可参考74HC系列

  设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:

输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)

  在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。

  1.电阻作用:

  接电组就是为了防止输入端悬空

  减弱外部电流对芯片产生的干扰

  保护cmos内的保护二极管,一般电流不大于10mA,上拉和下拉、限流

  1.改变电平的电位,常用在TTL-CMOS匹配

  2.在引脚悬空时有确定的状态

  3.增加高电平输出时的驱动能力。

  4、为OC门提供电流

  那要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。

  如果有上拉电阻那它的端口在默认值为高电平你要控制它必须用低电平才能控制如三态门电路三极管的集电极,或二极管正极去控制把上拉电阻的电流拉下来成为低电平。

反之,

  尤其用在接口电路中,为了得到确定的电平,一般采用这种方法,以保证正确的电路状态,以免发生意外,比如,在电机控制中,逆变桥上下桥臂不能直通,如果它们都用同一个单片机来驱动,必须设置初始状态.防止直通!

  2、定义:

  上拉就是将不确定的信号通过一个电阻嵌位在高电平!

电阻同时起限流作用!

下拉同理!

  上拉是对器件注入电流,下拉是输出电流

  弱强只是上拉电阻的阻值不同,没有什么严格区分

  对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

  3、为什么要使用拉电阻:

  一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。

  数字电路有三种状态:

高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!

  一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 卡通动漫

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1