九年级上学期数学期中考试试题带答案.docx
《九年级上学期数学期中考试试题带答案.docx》由会员分享,可在线阅读,更多相关《九年级上学期数学期中考试试题带答案.docx(13页珍藏版)》请在冰豆网上搜索。
九年级上学期数学期中考试试题带答案
三一文库(XX)/初中三年级
〔九年级上学期数学期中考试试题带答案[1]〕
一、选择题(每小题4分,共40分)
1.下列各组线段能成比例的是( )
A.0.2cm,0.1m,0.4cm,0.2cmB.1cm,2cm,3cm,4cm
C.4cm,6cm,8cm,3cmD.cm,cm,cm,cm
2.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5B.2C.D.
3.若2有意义,则x、y的取值范围不可能是( )
A.x≤0 y≥0B.x>0y<0C.x<0y<0D.xy<0
4.关于x的方程中,其中的解为( )
A.﹣4、2B.4C.4、﹣2D.无答案
5.定义:
如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )
A.a=cB.a=bC.b=cD.a=b=c
6.以下方程只有两个不相等的实数根的是( )
A.(x﹣2)2=4B.x2﹣4x+4=0C.2x2﹣x+4=0D.(x﹣1)2﹣(x+1)2=4
7.如图所示,在数轴上点A所表示的数x的范围是( )
A.sin30°<x<sin60°B.cos30°<x<cos45°
C.tan30°<x<tan45°D.tan45°<x<tan60°
8.方程x2=的解为( )
A.B.±2C.+D.±4
9.a=5+2,b=,则a与b的关系是( )
A.a=bB.ab=1C.a>bD.a<b.
10.如图,在梯形ABCD中AB∥CD,中位线EF与对角线AC、BD交于M、N两点,若EF=18,NM=8,则AB长为( )
A.10B.13C.20D.26
二、填空题.(每小题4分,共28分)
11.将一个三角形放在太阳光下,它所形成的投影是 .
12.方程x2﹣4x﹣21=0的解为 .
13.将点A(﹣3,﹣2)先沿y轴向上平移5个单位,再沿x轴向左平移4个单位得到点A′,则点A′的坐标是 .
14.关于x的一元二次方程x2﹣kx+2=0中,x1,x2是方程的两根,且x1+x2=3,则k= .
15.把正确的序号填在横线上 .
①菱形四边中点围成的四边形是矩形.
②梯形中位线为a,高为n,则面积为ah.
③=a+b.
16.已知==,且2x+y﹣z=21,则3x+y+z= .
17.在△ABC中,AD、BE分别是三角形的中线,且交于G点,则的值为 .
1005#重庆)已知方程3x2﹣9x+m=0的一个根是1,则m的值是 .
三、解答题(共32分)
19.已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出△A1B1C1与△ABC相似(与图形同向),且相似比是2的三角形,它的三个对应顶点的坐标分别是:
Α1( , );B1( , );С1( , )
20.计算:
(1)计算:
2﹣1+(π﹣3.14)0+sin60°﹣﹣;
(2)先化简,再求值:
(a+b)(a﹣b)+b(2a+b),其中a=1,b=2.
21.如图,如图,在△ABC中,DE∥BC,若,已知DE=3cm,
(1)证明:
△ABC∽△ADE;
(2)求BC的值.
22.若关于一元二次方程x2﹣(2m+1)x+(m﹣2)2=0有实数根,则m的取值范围为多少?
B卷(共5小题,满分50分)
23.我们知道任何实数的平方一定是一个非负数,即:
(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理:
∵x
x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0
∴(x+1)2+2≥2,故x2+2x+3的最小值是2.
试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?
若有,请求出它的最大值或最小值.
24.如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.
25.某数学课外实习小组想利用树影测量树高,他们在同一时刻测得一身高为1.5米的同学的影子长为1.35米,因大树靠近一栋建筑物,大树的影子不全在地面上,他们测得地面部分的影子长BC=3.6米,墙上影子高CD=1.8米,求树高AB.(根据题意画出草图并计算)
26.已知一元二次方程x2﹣2x+m﹣1=0.
(1)当m取何值时,方程有两个不相等的实数根?
(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.
27.阅读下列材料
小华在学习中发现如下结论:
如图1,点A,A1,A2在直线l上,当直线l∥BC时,.
请你参考小华的学习经验画图(保留画图痕迹):
(1)如图2,已知△ABC,画出一个等腰△DBC,使其面积与△ABC面积相等;
(2)如图3,已知△ABC,画出两个Rt△DBC,使其面积与△ABC面积相等(要求:
所画的两个三角形不全等);
(3)如图4,已知等腰△ABC中,AB=AC,画出一个四边形ABDE,使其面积与△ABC面积相等,且一组对边DE=AB,另一组对边BD≠AE,对角∠E=∠B.
2014-2015学年甘肃省天水市甘谷县模范中学九年级(上)期中数学试卷
参考答案与试题解析
一、选择题(每小题4分,共40分)
1.下列各组线段能成比例的是( )
A.0.2cm,0.1m,0.4cm,0.2cmB.1cm,2cm,3cm,4cm
C.4cm,6cm,8cm,3cmD.cm,cm,cm,cm
考点:
比例线段.
分析:
分别计算各组数中最大的数与最小的数的积和另外两个数的积,然后根据比例线段的定义进行判断.
解答:
解:
A、因为0.2×0.2=0.1×0.4,所以0.2cm,0.1m,0.4cm,0.2cm成比例,所以A选项正确;
B、因为1×4≠2×4,所以1cm,2cm,3cm,4cm不成比例,所以B选项错误;
C、因为4×6≠8×3,所以4cm,6cm,8cm,3cm不成比例,所以C选项错误;
D、因为×≠×,所以cm,cm,cm,cm不成比例,所以D选项错误.
故选A.
点评:
本题考查了比例线段:
判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.
2.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5B.2C.D.
考点:
实数与数轴.
分析:
本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.
解答:
解:
由勾股定理可知,
∵OB=,
∴这个点表示的实数是.
故选D.
点评:
本题考查了勾股定理的运用和如何在数轴上表示一个无理数的方法,解决本题的关键是根据勾股定理求出OB的长.
3.若2有意义,则x、y的取值范围不可能是( )
A.x≤0 y≥0B.x>0y<0C.x<0y<0D.xy<0
考点:
二次根式有意义的条件.
分析:
根据选项中的条件确定被开方数的符号,被开方数大于或等于0则一定有意义,若小于0则没有意义,不成立.
解答:
解:
A、当x≤0,y≥0时,被开方数﹣x3y≥0,则式子一定有意义;
B、当x>0y<0时,被开方数﹣x3y>0,则式子一定有意义;
C、当x<0y<0时,被开方数﹣x3y<0,则式子一定没有意义;
D、当xy<0时,被开方数﹣x3y>0,则式子一定有意义.
故选C.
点评:
考查了二次根式的意义和性质.概念:
式子(a≥0)叫二次根式.性质:
二次根式中的被开方数必
须是非负数,否则二次根式无意义.
4.关于x的方程中,其中的解为( )
A.﹣4、2B.4C.4、﹣2D.无答案
考点:
换元法解分式方程.
专题:
计算题;整体思想;换元法.
分析:
换元法即是整体思想的考查,解题的关键是找到这个整体,此题的整体是,设=y,换元后整理即可求得.
解答:
解:
设y=,则原方程可变为y2﹣2y﹣8=0,
解得y1=﹣2,y2=4,
∴=﹣2(舍去),=4,
故选B.
点评:
本题考查了用换元法解方程,解题关键是能准确的找出可用替换的代数式,再用字母y代替解方程.
5.定义:
如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )
A.a=cB.a=bC.b=cD.a=b=c
考点:
根的判别式.
专题:
压轴题;新定义.
分析:
因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.
解答:
解:
∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,
∴△=b2﹣4ac=0,
又a+b+c=0,即b=﹣a﹣c,
代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,
即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,
∴a=c.
故选A
点评:
一元二次方程根的情况与判别式△的关系:
(1)△>0#方程有两个不相等的实数根;
(2)△=0#方程有两个相等的实数根;
(3)△<0#方程没有实数根.
6.以下方程只有两个不相等的实数根的是( )
A.(x﹣2)2=4B.x2﹣4x+4=0C.2x2﹣x+4=0D.(x﹣1)2﹣(x+1)2=4
考点:
根的判别式.
专题:
计算题.
分析:
对于(x﹣2)2=4,直接利用开平方法解得两个不相等的实数根;对于x2﹣4x+4=0,计算△=0,方程有两个相等的实数根;对于2x2﹣x+4=0,计算△=1﹣4×2×4<0,即方程没有实数根;对于(x﹣1)2﹣(x+1)2=4,整理为:
﹣4x=4,即方程只有一个实数根.由此可得到正确的选项.
解答:
解:
(1)(x﹣2)2=4,两边开方得,x﹣2=±2,即方程有两个不相等的实数根,所以A对;
(2)x2﹣4x+4=0,△=42﹣4×4=0,即方程有两个相等的实数根,所以B错;
(3)△=1﹣4×2×4<0,即方程没有实数根,所以C错;
(4)方程变为:
﹣4x=4,即方程只有一个实数根,所以D错.
故选A.
点评:
本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
7.如图所示,在数轴上点A所表示的数x的范围是( )
A.sin30°<x<sin60°B.cos30°<x<cos45°
C.tan30°<x<tan45°D.tan45°<x<tan60°
考点:
特殊角的三角函数值;实数与数轴.
分析:
先根据数轴上A点的位置确定出其范围,再根据特殊角的三角函数值对四个选项进行分析即可.
解答:
解:
由数轴上A点的位置可知,<A<2.
A、由sin30°<x<sin60°可知,×<x<,即<x<,故本选项错误;
B、由cos30°<x<cos45°可知,<x<×,即<x<,故本选项错误;
C、由tan30°<x<tan45°可知,×<x<1,即<x<1,故本选项错误;
D、由tan45°<x<tan60°可知,×1<x<,即<x<,故本选项正确.
故选D.
点评:
本题考查的是特殊角的三角函数值及在数轴的特点,熟记各特殊角的三角函数值是解答此题的关键.
8.方程x2=的解为( )
A.B.±2C.+D.±4
考点:
解一元二次方程-直接开平方法.
专题:
计算题.
分析:
先求得x2的值,再求一个数的
平方根,即可得出方程的解.
解答:
解:
x2=,整理得x2=2,
∴x=±,
故选A.
点评:
本题考查了一元二次方程的解法﹣直接开平方法,及一个正数的平方根有两个,它们互为相反数.
9.a=5+2,b=,则a与b的关系是( )
A.a=bB.ab=1C.a>bD.a<b.
考点:
分母有理化.
分析:
首先将b分母有理化,再与a比较.
解答:
解:
b===5,
∵a=5,
∴a=b,
故选A.
点评:
本题主要考查了分母有理化,先化简b再比较是解答此题的关键.
10.如图,在梯形ABCD中AB∥CD,中位线EF与对角线AC、BD交于M、N两点,若EF=18,NM=8,则AB长为( )
A.10B.13C.20D.26
考点:
梯形中位线定理;三角形中位线定理.
分析:
由梯形的中位线定理得出EF∥AB,E、F分别是AD、BC的中点,证出ME、NF、MF分别是△ADC、△BDC、△ABC的中位线,得出ME=NF=CD,EN=AB,求出EM,得出EN,即可得出AB的长.
解答:
解:
∵EF是梯形ABCD的中位线,
∴EF∥AB,E、F分别是AD、BC的中点,
∴M、N分别是AC、BD的中点,
∴ME、NF、MF分别是△ADC、△BDC、△ABC的中位线,
∴ME=NF=CD,EN=AB,
∴EM=(EF﹣MN)=(18﹣8)=5,
∴EN=5+8=13,∴AB=2EN=26;
故选:
D.
点评:
本题考查了梯形中位线定理、三角形中位线定理;熟练掌握梯形中位线和三角形中位线定理,并能进行推理论证与计算是解决问题的关键.
二、填空题.(每小题4分,共28分)
11.将一个三角形放在太阳光下,它所形成的投影是 三角形或一条线段 .
考点:
平行投影.
分析:
将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.
解答:
解:
根据太阳高度角不同,所形成的投影也不同;
当三角板与阳光平行时,所形成的投影为一条线段;
当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形.
故答案为:
三角形或一条线段.
点评:
本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.
12.方程x2﹣4x﹣21=0的解为 7,﹣3 .
考点:
解一元二次方程-因式分解法;因式分解-十字相乘法等.
专题:
因式分解.
分析:
用十字相乘法因式分解,可以求出方程的根.
解答:
解:
(x﹣7)(x+3)=0
x1=7,x2=﹣3.
故答案是:
7,﹣3.
点评:
本题考查的是用因式分解法解一元二次方程,用十字相乘法因式分解,可以求出方程的根.
13.将点A(﹣3,﹣2)先沿y轴向上平移5个单位,再沿x轴向左平移4个单位得到点A′,则点A′的坐标是 (﹣7,3) .
考点:
坐标与图形变化-平移.
分析:
根据点的平移规律,左右移,横坐标减加,纵不变,上下移,纵坐标加减,横不变即可解的答案.
解答:
解:
点A(﹣3,﹣2)先沿y轴向上平移5个单位,再沿x轴向左平移4个单位得到点A′,
∴A′的坐标是(﹣3﹣4,﹣2+5),
即:
(﹣7,3).
故答案为:
(﹣7,3).
点评:
此题主要考查了点的平移规律,正确掌握规律是解题的关键.
14.关于x的一元二次方程x2﹣kx+2=0中,x1,x2是方程的两根,且x1+x2=3,则k= 3 .
考点:
根与系数的关系.
专题:
计算题.
分析:
根据一元二次方程根与系数的关系,x1+x2=﹣,x1#x2=,可以求出.
解答:
解:
方程x2﹣kx+2=0中a=1,c=2,b=﹣k,
∵x1+x2=k,x1+x2=3,
∴k=3.
故答案为:
3.
点评:
此题主要考查了根与系数的关系,要记住x1+x2=﹣,x1#x2=.
15.把正确的序号填在横线上 ① .
①菱形四边中点围成的四边形是矩形.
②梯形中位线为a,高为n,则面积为ah.
③=a+b.
考点:
中点四边形;二次根式的性质与化简;梯形中位线定理.
专题:
计算题.
分析:
根据中点四边形的判定方法和菱形的性质对①进行判断;根据梯形中位线性质和梯形的面积公式对②进行判断;根据最简二次根式的定义对③进行判断.
解答:
解:
菱形的对角线互相垂直,则菱形四边中点围成的四边形是矩形,所以①正确;
梯形中位线为a,高为n,则梯形的面积=ah,所以②错误;
是最简二次根式,所以③错误.
故答案为①.
点评:
本题考查了中点四边形:
连结四边形各边中点所得四边形为平行四边形.也考查了二次根式的性质与化简、梯形的中位线性质.
16.已知==,且2x+y﹣z=21,则3x+y+z= .
考点:
解三元一次方程组.
分析:
运用换元法,设===t,得x=3t,y=4t,z=5t,代入2x+y﹣z=21中,求得t的值,再计算3x+y+z的值.
解答:
解:
设===t,则x=3t,y=4t,z=5t,
代入2x+y﹣z=21中,得
6t+4t﹣5t=21,
解得t=,
∴3x+y+z=9t+4t+5t
=18t
=.
故答案为:
.
点评:
本题考查了代数式的求值,设参数t,运用换元法是解题的关键.
17.在△ABC中,AD、BE分别是三角形的中线,且交于G点,则的值为 2 .
考点:
三角形的重心.
专题:
计算题.
分析:
由三角形重心的概念可知,再根据重心的性质即可求得.
解答:
解:
∵AD、BE分别是三角形的中线,
∴G是△ABC的重心,
∴AG=2GD,
∴=2.
故答案为:
2.
点评:
此题考查了重心的概念和性质:
三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
1005#重庆)已知方程3x2﹣9x+m=0的一个根是1,则m的值是 6 .
考点:
根与系数的关系.
分析:
欲求m,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m值.
解答:
解:
设方程的另一根为x1,又∵x=1,
∴,解得m=6.
点评:
此题也可将x=1直接代入方程3x2﹣9x+m=0中求出m的值.
三、解答题(共32分)
19.已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出△A1B1C1与△ABC相似(与图形同向),且相似比是2的三角形,它的三个对应顶点的坐标分别是:
Α1( ﹣3 , 1 );B1( 3 , 3 );С1( 1 , ﹣1 )
考点:
作图-位似变换;坐标确定位置.
专题:
作图题.
分析:
先在图上描出三点,顺次连接得三角形,再连接AB、CB、并延长到2AB、2CB、长度找到各点的对应点,顺次连接即可.并从坐标系中读出各点的坐标.
解答:
解:
从坐标系中可知各点的坐标为:
A1(﹣3,1)B1(3,3)C1(1,﹣1).(3分)
点评:
本题考查了画位似图形.画位似图形的一般步骤为:
①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.
20.计算:
(1)计算:
2﹣1+(π﹣3.14)0+sin60°﹣﹣;
(2)先化简,再求值:
(a+b)(a﹣b)+b(2a+b),其中a=1,b=2.
考点:
整式的混合运算—化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.
分析:
(1)首先计算乘方,特殊角的三角函数,去掉绝对值符号,然后合并同类二次根式即可;
(2)首先利用平方差公式以及单项式与多项式的乘法法则计算乘法,然后合并同类项即可.
解答:
解:
(1)原式=+1+﹣=;
(2)原式=a2﹣b2+2ab+b2=a2+2ab.
当a=1,b=2时,原式=1+2×1×2=5.
点评:
本题主要考查平方差公式的利用,熟记公式并灵活运用是解题的关键.
21.如图,如图,在△ABC中,DE∥BC,若,已知DE=3cm,
(1)证明:
△ABC∽△ADE;
(2)求BC的值.
考点:
相似三角形的判定与性质.
分析:
(1)根据相似三角形的判定定理即可得到结论;
(2)根据相似三角形的性质即可得到结果.
解答:
解:
(1)∵DE∥BC,
∴△ADE∽△ABC,
(2)∵
△ABC∽△ADE,
∴==,
∵DE=3cm,
∴BC=9cm.
点评:
本题考查了相似三角形的性质和判定的应用,熟练地运用性质进行推理是解此题的关键.
22.若关于一元二次方程x2﹣(2m+1)x+(m﹣2)2=0有实数根,则m的取值范围为多少?
考点:
根的判别式.
专题:
计算题.
分析:
由方程有实根,得到△≥0,即△=(2m+1)2﹣4(m﹣2)2=20m﹣15≥0,解不等式即可得到m的取值范围
解答:
解:
∵关于一元二次方程x2﹣(2m+1)x+(m﹣2)2=0有实数根,
∴△≥0,即△=(2m+1)2﹣4(m﹣2)2=20m﹣15≥0,解得m≥,
所以m的取值范围为m≥.
点评:
本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
B卷(共5小题,满分50分)
23.我们知道任何实数的平方一定是一个非负数,即:
(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理:
∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0
∴(x+1)2+2≥2,故x2+2x+3的最小值是2.
试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?
若有,请求出它的最大值或最小值.
考点:
二次函数的最值.
分析:
先把代数